精英家教网 > 高中数学 > 题目详情
已知.
(1)求的极值,并证明:若
(2)设,且,证明:
,由上述结论猜想一个一般性结论(不需要证明);
(3)证明:若,则.
(1)详见解析;(2) 详见解析;(3) 详见解析.

试题分析:(1)利用求导探求函数的单调性,进而确定其极值;借助结论恒成立,证明;(2)借助第一问的结论,通过拼凑技巧进行构造要证明的不等式;(3)借助第二问的猜想结论,进行构造,利用对数运算进行化简整理即可得到证明的结论.
试题解析:(1)
当x∈(0,1)时,x∈(1,+∞)时
在(0,1)递增,在(1,+∞)递减,
                                              2分
∴当恒成立,即恒成立。
         4分
证明:
(2)证明:设,且,令,则,且

由(1)可知   ①
              ②
+②,得

      8分
猜想:若,且时有
       9分
(3)证明:令
由猜想结论得

=

即有。                   14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数.
(I)求函数的单调递增区间;
(II) 若关于的方程在区间内恰有两个不同的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知的一个极值点.
(Ⅰ) 求的值;  
(Ⅱ) 求函数的单调递减区间;
(Ⅲ)设,试问过点可作多少条直线与曲线相切?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,点为一定点,直线分别与函数的图象和轴交于点,,记的面积为.
(I)当时,求函数的单调区间;
(II)当时, 若,使得, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于实数集上的可导函数,若满足,则在区间[1,2]上必有(   )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数具有下列特征:,则的图形可以是下图中的(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x3-3ax2+3bx的图像与直线12x+y-1=0相切于点(1,-11)。
(1)求a,b的值;
(2)讨论函数f(x)的单调性。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知处取得极值
(1)求
(2)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)当时,求的单调区间;
(Ⅱ)设函数在点处的切线为,直线轴相交于点.若点的纵坐标恒小于1,求实数的取值范围.

查看答案和解析>>

同步练习册答案