精英家教网 > 高中数学 > 题目详情
设函数.
(I)求函数的单调递增区间;
(II) 若关于的方程在区间内恰有两个不同的实根,求实数的取值范围.
(Ⅰ);(Ⅱ)的取值范围是

试题分析:(Ⅰ)求出导数,根据导数大于0求得的单调递增区间.
(Ⅱ)令.利用导数求出的单调区间和极值点,画出其简图,结合函数零点的判定定理找出所满足的条件,由此便可求出的取值范围.
试题解析:(Ⅰ)函数的定义域为

,则使的取值范围为,
故函数的单调递增区间为  
(Ⅱ)∵,
 
,  
,且,
,由.
在区间内单调递减,在区间内单调递增, 
在区间内恰有两个相异实根   
解得:.
综上所述,的取值范围是  
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数(其中为常数).
(I)当时,求函数的最值;
(Ⅱ)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=xlnx.
(I)求f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)证明:都有

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)若函数上是增函数,求正实数的取值范围;
(Ⅱ)若,设,求函数上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,且.
(1)求函数的表达式;
(2)当时,不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 .
(1)若.
(2)若函数上是增函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知.
(1)求的极值,并证明:若
(2)设,且,证明:
,由上述结论猜想一个一般性结论(不需要证明);
(3)证明:若,则.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数的图象如图所示(其中是函数的导函数)下面四个图象中,的图象大致是    (  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,则函数的单调递增区间是________.

查看答案和解析>>

同步练习册答案