精英家教网 > 高中数学 > 题目详情

【题目】已知向量,设函数

1)若函数的图象关于直线对称,且时,求函数的单调增区间;

2)在(1)的条件下,当时,函数有且只有一个零点,求实数的取值范围.

【答案】(1);(2).

【解析】试题分析:(1)根据平面向量数量积运算求解出函数,利用函数的图象关于直线对称,且可得,结合三角函数的性质可得其单调区间;(2)当时,求出函数的单调性,函数有且只有一个零点,利用其单调性求解求实数的取值范围.

试题解析:

解:向量

(1)∵函数图象关于直线对称,

,解得:,∵,∴

,由

解得:

所以函数的单调增区间为

(2)由(1)知,∵

,即时,函数单调递增;

,即时,函数单调递减.

∴当时函数有且只有一个零点.

所以满足条件的

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前三项与数列{bn}的前三项相同,且a12a222a3+…+2n-1an=8n对任意nN*都成立,数列{bn+1-bn}是等差数列

1求数列{an}与{bn}的通项公式;

2是否存在kN*,使得bk-ak0,1?请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生活经验告诉我们当水注进容器(设单位时间内进水量相同)水的高度随着时间的变化而变化在下图中请选择与容器相匹配的图像A对应________B对应________C对应________D对应________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年1月1日,作为贵阳市打造“千园之城”27个示范性公园之一的泉湖公园正式开园.元旦期间,为了活跃气氛,主办方设置了水上挑战项目向全体市民开放.现从到公园游览的市民中随机抽取了60名男生和40名女生共100人进行调查,统计出100名市民中愿意接受挑战和不愿意接受挑战的男女生比例情况,具体数据如图表:

(1)根据条件完成下列列联表,并判断是否在犯错误的概率不超过1%的情况下愿意接受挑战与性别有关?

愿意

不愿意

总计

男生

女生

总计

(2)现用分层抽样的方法从愿意接受挑战的市民中选取7名挑战者,再从中抽取2人参加挑战,求抽取的2人中至少有一名男生的概率.

参考数据及公式:

0.1

0.05

0.025

0.01

2.706

3.841

5.024

6.635

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.

(1)求到平面的距离

(2)在线段上是否存在一点,使?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网络购物已经成为一种时尚,电商们为了提升知名度,加大了在媒体上的广告投入.经统计,近五年某电商在媒体上的广告投入费用x(亿元)与当年度该电商的销售收入y(亿元)的数据如下表:):

年份

2012年

2013年

2014

2015

2016

广告投入x

0.8

0.9

1

1.1

1.2

销售收入y

16

23

25

26

30

(1)求y关于x的回归方程; (2)2017年度该电商准备投入广告费1.5亿元,

利用(1)中的回归方程,预测该电商2017年的销售收入.

附:回归直线的斜率和截距的最小二乘估计公式分别为:

,选用数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)证明:对任意的,函数的图像与直线最多有一个交点;

(2)设函数,若函数与函数的图像至少有一个交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4;坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数).在以坐标原点为极点, 轴正半轴为极轴的极坐标中,曲线

(Ⅰ)求直线的普通方程和曲线的直角坐标方程.

(Ⅱ)求曲线上的点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(2,2)函数g(x)f(x1)f(32x)

(1)求函数g(x)的定义域

(2)f(x)是奇函数且在定义域上单调递减求不等式g(x)0的解集

查看答案和解析>>

同步练习册答案