分析 (1)运用重要不等式可得a2+b2≥2ab,a2+3≥2$\sqrt{3}$a,b2+3≥2$\sqrt{3}$b,累加即可得证;
(2)运用反证法证明,假设a,c,b都不大于0,可得a+b+c≤0,再由配方和平方非负,可得矛盾,即可得证.
解答 证明:(1)由a2+b2≥2ab,a2+3≥2$\sqrt{3}$a,b2+3≥2$\sqrt{3}$b;
将此三式相加得,
2(a2+b2+3)≥2ab+2$\sqrt{3}$a+2$\sqrt{3}$b,
即有a2+b2+3≥ab+$\sqrt{3}$(a+b);
(2)(反证法)
假设a,c,b都不大于0,即a≤0,b≤0,c≤0,则a+b+c≤0,
由a=x2+2y+$\frac{π}{2}$,b=y2+2z+$\frac{π}{3}$,c=z2+2x+$\frac{π}{6}$,
可得a+b+c=(x2+2y+$\frac{π}{2}$)+(y2+2z+$\frac{π}{3}$)+(z2+2x+$\frac{π}{6}$)
=(x2+2x+1)+(y2+2y+1)+(z2+2z+1)+π-3
=(x+1)2+(y+1)2+(z+1)2+π-3>0,
即a+b+c>0与a+b+c≤0矛盾,
故假设错误,原命题成立.
点评 本题考查不等式的证明,注意运用重要不等式和反证法,考查推理能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{13}{18}$ | B. | $\frac{13}{22}$ | C. | $\frac{3}{22}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2p}$ | B. | -$\frac{1}{p}$ | C. | $\frac{1}{p}$ | D. | $\frac{1}{2p}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 未发病 | 发病 | 合计 | |
| 未注射疫苗 | 20 | x | A |
| 注射疫苗 | 30 | y | B |
| 合计 | 50 | 50 | 100 |
| P( K2≤K0) | 0.05 | 0.01 | 0.005 | 0.001 |
| K0 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com