精英家教网 > 高中数学 > 题目详情
17.(1)求证:a2+b2+3≥ab+$\sqrt{3}$(a+b);
(2)已知a,b,c均为实数,且a=x2+2y+$\frac{π}{2}$,b=y2+2z+$\frac{π}{3}$,c=z2+2x+$\frac{π}{6}$,求证:a,b,c中至少有一个大于0.

分析 (1)运用重要不等式可得a2+b2≥2ab,a2+3≥2$\sqrt{3}$a,b2+3≥2$\sqrt{3}$b,累加即可得证;
(2)运用反证法证明,假设a,c,b都不大于0,可得a+b+c≤0,再由配方和平方非负,可得矛盾,即可得证.

解答 证明:(1)由a2+b2≥2ab,a2+3≥2$\sqrt{3}$a,b2+3≥2$\sqrt{3}$b;
将此三式相加得,
2(a2+b2+3)≥2ab+2$\sqrt{3}$a+2$\sqrt{3}$b,
即有a2+b2+3≥ab+$\sqrt{3}$(a+b);
(2)(反证法)
假设a,c,b都不大于0,即a≤0,b≤0,c≤0,则a+b+c≤0,
由a=x2+2y+$\frac{π}{2}$,b=y2+2z+$\frac{π}{3}$,c=z2+2x+$\frac{π}{6}$,
可得a+b+c=(x2+2y+$\frac{π}{2}$)+(y2+2z+$\frac{π}{3}$)+(z2+2x+$\frac{π}{6}$)
=(x2+2x+1)+(y2+2y+1)+(z2+2z+1)+π-3
=(x+1)2+(y+1)2+(z+1)2+π-3>0,
即a+b+c>0与a+b+c≤0矛盾,
故假设错误,原命题成立.

点评 本题考查不等式的证明,注意运用重要不等式和反证法,考查推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年江苏泰兴中学高一下学期期中数学试卷(解析版) 题型:解答题

中,分别为内角的对边,且

(1)求角的大小;

(2)若,试判断的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow a$和$\overrightarrow b$的夹角为120°,且|$\overrightarrow a$|=2,|$\overrightarrow b$|=5,则(2$\overrightarrow a$-$\overrightarrow{b}$)•$\overrightarrow b$=-35.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设tan(α+β)=$\frac{2}{5}$,tan(β-$\frac{π}{4}$)=-$\frac{1}{4}$,则tan(α+$\frac{π}{4}$)的值是(  )
A.$\frac{13}{18}$B.$\frac{13}{22}$C.$\frac{3}{22}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知抛物线y2=2px(p>0),△ABC的三个顶点都在抛物线上,O为坐标原点,设△ABC三条边AB,BC,AC的中点分别为M,N,Q,且M,N,Q的纵坐标分别为y1,y2,y3.若直线AB,BC,AC的斜率之和为-1,则$\frac{1}{{y}_{1}}$+$\frac{1}{{y}_{2}}$+$\frac{1}{{y}_{3}}$的值为(  )
A.-$\frac{1}{2p}$B.-$\frac{1}{p}$C.$\frac{1}{p}$D.$\frac{1}{2p}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程是$ρcos(θ-\frac{π}{4})=2\sqrt{2}$,圆C的极坐标方程是ρ=4sinθ.
(Ⅰ)求l与C交点的极坐标;
(Ⅱ)设P为C的圆心,Q为l与C交点连线的中点,已知直线PQ的参数方程是$\left\{\begin{array}{l}x=\root{3}{t}+a\\ y=\frac{b}{2}\root{3}{t}+1\end{array}\right.$(t为参数),求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.P为抛物线y2=4x上任意一点,P在y轴上的射影为Q,点M(7,8),则|PM|与|PQ|长度之和的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=4ax-$\frac{a}{x}$-2lnx.
(Ⅰ)当a=1时,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求实数a的取值范围;
(Ⅲ)设函数g(x)=$\frac{6e}{x}$,若在区间[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如表:
未发病发病合计
未注射疫苗20xA
注射疫苗30yB
合计5050100
现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为$\frac{2}{5}$.
(1)求2×2列联表中的数据x,y,A,B的值;
(2)绘制发病率的条形统计图,并判 断疫苗是否有效?
(3)能够有多大把握认为疫苗有效?
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P( K2≤K00.050.010.0050.001
K03.8416.6357.87910.828

查看答案和解析>>

同步练习册答案