【题目】如图,平面四边形
中,
,
是
,
中点,
,
,
,将
沿对角线
折起至
,使平面
平面
,则四面体
中,下列结论不正确的是( )
![]()
A.
平面![]()
B. 异面直线
与
所成的角为![]()
C. 异面直线
与
所成的角为![]()
D. 直线
与平面
所成的角为![]()
科目:高中数学 来源: 题型:
【题目】如图,椭圆
:
的左、右焦点分别为
,
轴,直线
交
轴于
点,
,
为椭圆
上的动点,
的面积的最大值为1.
![]()
(1)求椭圆
的方程;
(2)过点
作两条直线与椭圆
分别交于
且使
轴,如图,问四边形
的两条对角线的交点是否为定点?若是,求出定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(5分)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积为( )
A. 1升 B.
升 C.
升 D.
升
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,点
在椭圆
上.
(1)求椭圆
的方程;
(2)若不过原点
的直线
与椭圆
相交于
两点,与直线
相交于点
,且
是线段
的中点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为征求个人所得税法修改建议,某机构对当地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500)).
![]()
(1)求居民月收入在
的频率;
(2)根据频率分布直方图估算样本数据的中位数;
(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中用分层抽样方法抽出100人作进一步分析,则月收入在
的这段应抽多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,过点P(0,1)且互相垂直的两条直线分別与圆O:
交于点A,B,与圆M:(x﹣2)2+(y﹣1)2=1交于点C,D.
![]()
(1)若AB=
,求CD的长;
(2)若CD中点为E,求△ABE面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com