精英家教网 > 高中数学 > 题目详情
17.设m为正整数,(x+y)2m展开式的二项式系数最大值为a,(x+y)2m+1展开式的二项式数的最大值为b,若13a=7b,则m=(  )
A.5B.6C.7D.8

分析 根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值.

解答 解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,
以及二项式系数的性质可得a=${C}_{2m}^{m}$,
同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得 b=${C}_{2m+1}^{m+1}$.
再由13a=7b,可得13${C}_{2m}^{m}$=7${C}_{2m+1}^{m}$,即 13×$\frac{(2m)!}{m!•m!}$=7×$\frac{(2m+1)!}{m!•(m+1)!}$,
即 13=7×$\frac{2m+1}{m+1}$,即 13(m+1)=7(2m+1),解得m=6,
故选:B.

点评 本题主要考查二项式系数的性质的应用,组合数的计算公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)是定义在R上的偶函数,若当x<0时,f(x)=-log2(-2x),则f(32)=(  )
A.-32B.-6C.6D.64

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.(1-x)6(1+x)4的展开式中x2的系数是-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,在正方体AC1中,E,F分别是AB,AA1的中点.
(1)求证:CE,D1F,DA三线交于点P;
(2)在(1)的结论中,G是D1E上一点,若FG交平面ABCD于点H,求证:P,E,H三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足an=1,且an=3an-1+3n(n≥2且n∈N*
(1)求证:数列{$\frac{{a}_{n}}{{3}^{n}}$}是等差数列:
(2)求数列{an}的通项公式:
(3)设数列{an}的前n项和为Sn,求证:$\frac{{S}_{n}}{{3}^{n}}$>$\frac{3}{2}n$-$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若复数z=$\frac{i}{1-i}$(i为虚数单位),则Imz=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.定义函数f(x)如下:对于实数x,如果存在整数m,使得|x-m|<$\frac{1}{2}$,则f(x)=m,已知等比数列{an}的首项a1=1,且f(a2)+f(a3)=2,则公比q的取值范围是(-$\frac{3\sqrt{2}}{2}$,-$\frac{\sqrt{14}}{2}$)∪($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.现有10双不同尺码的手套,从中取出6只手套,恰好有2双的情况有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知定义在区间[-1,1]上的函数f(x)=$\sqrt{1+{x}^{2}}$,设任意x1,x2∈[-1,1],且x1≠x2.求证:|f(x1)-f(x2)|<|x1-x2|.

查看答案和解析>>

同步练习册答案