精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,且满足:a1=a(a≠0),an+1=rSn(n∈N*,r∈R,r≠-1),
(1)求数列{an}的通项公式;
(2)若存在k∈N*,使得Sk+1,Sk,Sk+2成等差数列,试判断:对于任意的m∈N*,且m≥2,am+1,am,am+2是否成等差数列,并证明你的结论.

解:(1)由已知,可得
两式相减可得,即
又a2=ra1=ra,
所以当r=0时,数列{an}为:a,0,…,0,…;
当r≠0,r≠-1时,由已知a≠0,所以an≠0(n∈N*),
于是由,可得
∴a2,a3,…,an,…成等比数列,
∴当n≥2时,
综上,数列{an}的通项公式为
(2)对于任意的m∈N*,且m≥2,成等差数列.
证明如下:当r=0时,由(1)知
∴对于任意的m∈N*,且m≥2,成等差数列;
当r≠0,r≠-1时,

若存在k∈N*,使得成等差数列,则
,即
由(1)知,a2,a3,…,an,…的公比r+1=-2,
于是对于任意的m∈N*,且m≥2,am+1=-2am
从而
,即成等差数列.
综上,对于任意的m∈N*,且m≥2,成等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案