精英家教网 > 高中数学 > 题目详情

已知a∈R,函数f(x)=(-x2ax)ex(x∈R,e为自然对数的底数).

(1)当a=2时,求函数f(x)的单调递增区间;

(2)若函数f(x)在(-1,1)上单调递增,求a的取值范围.

 (1)当a=2时,f(x)=(-x2+2x)ex

f′(x)=(-2x+2)ex+(-x2+2x)ex=(-x2+2)ex.

f′(x)>0,即(-x2+2)ex>0,

∵ex>0,∴-x2+2>0,解得-x.

∴函数f(x)的单调递增区间是(-).

(2)∵函数f(x)在(-1,1)上单调递增,

f′(x)≥0对x∈(-1,1)都成立.

f′(x)=(-2xa)ex+(-x2ax)ex

=[-x2+(a-2)xa]ex

∴[-x2+(a-2)xa]ex≥0对x∈(-1,1)都成立.

∵ex>0,

∴-x2+(a-2)xa≥0对x∈(-1,1)都成立.

ax+1-x∈(-1,1)都成立.

yx+1-,则y′=1+>0,

yx+1-在(-1,1)上单调递增,

y<1+1-,∴a.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
1
12
x3+
a+1
2
x2+(4a+1)x

(Ⅰ)如果函数g(x)=f′(x)是偶函数,求f(x)的极大值和极小值;
(Ⅱ)如果函数f(x)是(-∞,?+∞)上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=ln(x+1)-x2+ax+2.
(1)若函数f(x)在[1,+∞)上为减函数,求实数a的取值范围;
(2)令a=-1,b∈R,已知函数g(x)=b+2bx-x2.若对任意x1∈(-1,+∞),总存在x2∈[-1,+∞),使得f(x1)=g(x2)成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
a
x
+lnx-1,g(x)=(lnx-1)
e
x
 
+x
(其中e为自然对数的底).
(1)当a>0时,求函数f(x)在区间(0,e]上的最小值;
(2)是否存在实数x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在求出x0的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)已知a∈R,函数 f(x)=x3+ax2+(a-3)x的导函数是偶函数,则曲线y=f(x)在原点处的切线方程为
3x+y=0
3x+y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江)已知a∈R,函数f(x)=x3-3x2+3ax-3a+3.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x∈[0,2]时,求|f(x)|的最大值.

查看答案和解析>>

同步练习册答案