【题目】设数列{an}满足a1+3a2+32a3+…+3n﹣1an=
(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=
,求数列{bn}的前n项和Sn .
【答案】
(1)解:∵a1+3a2+32a3+…+3n﹣1an=
,①
∴当n≥2时,a1+3a2+32a3+…+3n﹣2an﹣1=
.②
①﹣②,得3n﹣1an=
,
所以
(n≥2),
在①中,令n=1,得
也满足上式.
∴ ![]()
(2)解:∵
,
∴bn=n3n.
∴Sn=3+2×32+3×33+…+n3n.③
∴3Sn=32+2×33+3×34+…+n3n+1.④
④﹣③,得2Sn=n3n+1﹣(3+32+33+…+3n),
即2Sn=n3n+1﹣
.
∴ ![]()
【解析】(1)由a1+3a2+32a3+…+3n﹣1an=
当n≥2时,a1+3a2+32a3+…+3n﹣2an﹣1=
,两式作差求出数列{an}的通项.(2)由(1)的结论可知数列{bn}的通项.再用错位相减法求和即可.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系
,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
科目:高中数学 来源: 题型:
【题目】根据要求,解答下列问题。
(1)求经过点A(3,2),B(-2,0)的直线方程;
(2)求过点P(-1,3),并且在两轴上的截距相等的直线方程;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,AP=1,AD=2,E为线段PD上一点,记
=λ. 当λ=
时,二面角D﹣AE﹣C的平面角的余弦值为
. ![]()
(1)求AB的长;
(2)当
时,求异面直线BP与直线CE所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,ABCD﹣A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1 , B1C1的中点,P是上底面的棱AD上的一点,AP=
,过P、M、N的平面交上底面于PQ,Q在CD上,则PQ= . ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A、B分别在射线CM、CN(不含端点C)上运动,∠MCN=
π,在△ABC中,角A、B、C所对的边分别是a、b、c.
(Ⅰ)若a、b、c依次成等差数列,且公差为2.求c的值;
(Ⅱ)若c=
,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知空间四边形ABCD,E、H分别是AB、AD的中点,F、G分别是边BC、DC的三等分点(如图), ![]()
求证:
(1)对角线AC、BD是异面直线;
(2)直线EF和HG必交于一点,且交点在AC上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第12界全运会于2013年8月31日在辽宁沈阳顺利举行,组委会在沈阳某大学招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:
),身高在175
以上(包括175
)定义为“高个子”,身高在175
以下(不包括175
)定义为“非高个子”.
![]()
(1)如果用分层抽样的方法从“高个子”和“非高个子”中共抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率?
(2)若从身高180
以上(包括180
)的志愿者中选出男、女各一人,求这两人身高相差5
以上的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数y=2cos(x﹣
)的图象上所有的点的横坐标缩短到原来的
倍(纵坐标不变),得到函数y=g(x)的图象,则函数y=g(x)的图象( )
A.关于点(﹣
,0)对称
B.关于点(
,0)对称
C.关于直线x=﹣
对称
D.关于直线x=
对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设F1 , F2分别是椭圆
=1的左、右焦点.
(1)若M是该椭圆上的一点,且∠F1MF2=120°,求△F1MF2的面积;
(2)若P是该椭圆上的一个动点,求
的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com