分析 (1)利用诱导公式化简即可得解;
(2)由已知利用诱导公式可求sinx,利用同角三角函数基本关系式可求cosx,进而可求f(x)的值.
解答 解:(1)f(x)=$\frac{sin(π-x)cos(2π-x)tan(x+π)}{{tan{{(-x-π)}_{\;}}sin(-x-π)}}$
=$\frac{sinxcosxtanx}{(-tanx)sinx}$
=-cosx.
(2)∵cos(x-$\frac{3π}{2}$)=-sinx=$\frac{1}{5}$,
∴可得:sinx=-$\frac{1}{5}$,
∵x为第三象限角,
∴可得cosx=-$\sqrt{1-si{n}^{2}x}$=-$\frac{2\sqrt{6}}{5}$,
∴由(1)可得:f(x)=-cosx=$\frac{2\sqrt{6}}{5}$.
点评 本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在数列{an}中,a1=1,an=$\frac{1}{2}$(an-1+$\frac{1}{{a}_{n-1}}$)(n∈N*),由其归纳出{an}的通项公式 | |
| B. | 由平面三角形的性质,推测空间四面体性质 | |
| C. | 两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=180° | |
| D. | 某校高二共10个班,1班51人,2班53人,3班52人,由此推测各班都超过50人 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{BD}$ | B. | $\overrightarrow{AC}$ | C. | $\overrightarrow 0$ | D. | $\overrightarrow{AB}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com