| A. | ($-\frac{{\sqrt{15}}}{3},\frac{{\sqrt{15}}}{3}$) | B. | ($0,\frac{{\sqrt{15}}}{3}$) | C. | ($-\frac{{\sqrt{15}}}{3},0$) | D. | ($-\frac{{\sqrt{15}}}{3},-1$) |
分析 曲线$x=\sqrt{{y^2}+6}$是焦点在x轴上的双曲线的右支,由直线y=kx+2与双曲线方程联立得:(1-k2)x2-4kx-10=0,由此利用根的判别式、韦达定理,结合图象能求出k的取值范围.
解答
解:如图,曲线$x=\sqrt{{y^2}+6}$是焦点在x轴上的双曲线的右支,
由直线y=kx+2与双曲线方程联立$\left\{\begin{array}{l}{y=kx+2}\\{x=\sqrt{{y}^{2}+6}}\end{array}\right.$,
消去y,得:(1-k2)x2-4kx-10=0
∵x1x2>0,∴-$\frac{10}{1-{k}^{2}}$>0,
∴k2>1,解得k>1或k<-1,
又x1+x2>0,∴$\frac{4k}{1-{k}^{2}}$>0,解得k<0,
∴k<-1,
又△=(4k2)+40(1-k2)>0,整理得k2<$\frac{5}{3}$,
解得-$\frac{\sqrt{15}}{3}$<k<$\frac{\sqrt{15}}{3}$,
∴-$\frac{\sqrt{15}}{3}<k<-1$或1<k<$\frac{\sqrt{15}}{3}$,
又由题意,直线与右支交于两点,由图象知k的取值范围是-$\frac{\sqrt{15}}{3}$<k<-1.
故选:D.
点评 本题考查实数的取值范围的求法,考查双曲线、直线方程、点到直线的距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | -$\frac{1}{4}$ | C. | $\frac{3}{4}$ | D. | -$\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| P(K2≥k0) | 0.1 | 0.01 | 0.001 |
| k0 | 2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com