精英家教网 > 高中数学 > 题目详情
13.已知圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0,
(1)当a为何值时,直线l与圆C相切.
(2)当直线l与圆C相交于A、B两点,且|AB|=2$\sqrt{2}$时,求直线l的方程.

分析 (1)圆C的圆心C(0,4)半径r=2,由直线l:ax+y+2a=0与圆相切,利用点到直线距离公式列出方程,能求出a的值.
(2)直线l与圆C相交于A、B两点,且|AB|=2$\sqrt{2}$时,d=$\sqrt{{r}^{2}-(\frac{|AB|}{2})^{2}}$=$\sqrt{2}$,再由圆心到直线的距离d=$\frac{|4+2a|}{\sqrt{{a}^{2}+1}}$,列出方程,求出a,由此能求出直线方程.

解答 (12分)解:(1)设圆心到直线的距离为d,
圆C:x2+y2-8y+12=0的圆心C(0,4)半径r=$\frac{1}{2}\sqrt{64-48}$=2,------1分
∵直线l:ax+y+2a=0与圆相切,
∴d=$\frac{|4+2a|}{\sqrt{{a}^{2}+1}}$=2,解得a=-$\frac{3}{4}$.---5分
(2)∵圆心到直线的距离d=$\frac{|4+2a|}{\sqrt{{a}^{2}+1}}$,
直线l与圆C相交于A、B两点,且|AB|=2$\sqrt{2}$时,d=$\sqrt{{r}^{2}-(\frac{|AB|}{2})^{2}}$=$\sqrt{2}$,-----7分
∴d=$\frac{|4+2a|}{\sqrt{{a}^{2}+1}}$=$\sqrt{2}$,解得a=-7或a=-1.
∴所求直线为7x-y+14=0或x-y+2=0.------12分

点评 本题主要考查直线和圆相切时实数值的求法,考查直线方程的求法,考查直线与圆的位置关系,点到直线的距离公式的应用等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.(Ⅰ) 比较下列两组实数的大小:
①$\sqrt{2}$-1与2-$\sqrt{3}$;           ②2-$\sqrt{3}$与$\sqrt{6}$-$\sqrt{5}$;
(Ⅱ) 类比以上结论,写出一个更具一般意义的结论,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=x3+x2+ax,a∈R是常数,若曲线y=f(x)有且仅有一条平行于直线y=x的切线,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线3x+4y+12=0与圆(x+1)2+(y+1)2=9的位置关系是(  )
A.过圆心B.相切C.相离D.相交

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知圆C:(x-2)2+y2=4,点P在直线l:y=x+3上,若圆C上存在两点A、B使得$\overrightarrow{PA}$=3$\overrightarrow{PB}$,则点P的横坐标的取值范围是$[{\frac{{-1-\sqrt{7}}}{2},\frac{{-1+\sqrt{7}}}{2}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{m•{4}^{x}+1}{{2}^{x}}$-m(m∈R).
(1)若函数f(x)有零点,求实数m的取值范围;
(2)若对任意的x∈[-1,0],都有0≤f(x)≤1,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若直线y=kx+2与曲线$x=\sqrt{{y^2}+6}$交于不同的两点,那么k的取值范围是(  )
A.($-\frac{{\sqrt{15}}}{3},\frac{{\sqrt{15}}}{3}$)B.($0,\frac{{\sqrt{15}}}{3}$)C.($-\frac{{\sqrt{15}}}{3},0$)D.($-\frac{{\sqrt{15}}}{3},-1$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.当曲线y=-$\sqrt{4-{x}^{2}}$与直线kx-y+2k-4=0有两个相异的交点时,实数k的取值范围是(  )
A.(0,$\frac{3}{4}$)B.($\frac{5}{12}$,$\frac{3}{4}$]C.($\frac{3}{4}$,1]D.($\frac{3}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知m>0,n>0,且mn=2,则2m+n的最小值为(  )
A.4B.5C.$2\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

同步练习册答案