精英家教网 > 高中数学 > 题目详情
2.当曲线y=-$\sqrt{4-{x}^{2}}$与直线kx-y+2k-4=0有两个相异的交点时,实数k的取值范围是(  )
A.(0,$\frac{3}{4}$)B.($\frac{5}{12}$,$\frac{3}{4}$]C.($\frac{3}{4}$,1]D.($\frac{3}{4}$,+∞)

分析 曲线y=-$\sqrt{4-{x}^{2}}$是以O(0,0)为圆心,以2为半径的下半圆,直线kx-y+2k-4=0过定点D(-2,-4),由此作出图形,结合图形得当曲线y=-$\sqrt{4-{x}^{2}}$与直线kx-y+2k-4=0有两个相异的交点时,实数k的取值范围.

解答 解:如图,曲线y=-$\sqrt{4-{x}^{2}}$是以O(0,0)为圆心,以2为半径的下半圆,
直线kx-y+2k-4=0过定点D(-2,-4),
A(-2,0),B(2,0),kBD=$\frac{-4-0}{-2-2}$=1,
设直线kx-y+2k-4=0与圆相切时,
圆心O(0,0)到直线的距离:
d=$\frac{|2k-4|}{\sqrt{{k}^{2}+1}}$=2,解得k=$\frac{3}{4}$,
结合图形得当曲线y=-$\sqrt{4-{x}^{2}}$与直线kx-y+2k-4=0有两个相异的交点时,
实数k的取值范围是($\frac{3}{4}$,1].
故选:C.

点评 本题考查实数的取值范围的求法,考查圆、直线方程、点到直线的距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.定义方程f(x)=f'(x)的实数根x0叫做函数f(x)的“新驻点”,如果函数g(x)=x,h(x)=ln(x+1),φ(x)=cosx($x∈(\frac{π}{2},\;π)$)的“新驻点”分别为α,β,γ,则α,β,γ从小到大排列是β、α、φ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0,
(1)当a为何值时,直线l与圆C相切.
(2)当直线l与圆C相交于A、B两点,且|AB|=2$\sqrt{2}$时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某科考试题中有甲、乙两道不同类型的选做题,且每道题满分为10分,每位考生需从中任选一题作答.
(1)A同学将自己在该考试中历次的选题及得分情况统计如下:
选甲题8次,得分分别为:6,10,10,6,6,10,6,10
选乙题10次,得分分别为:5,10,9,8,9,8,10,8,5,8
某次考试中,A同学的剩余时间仅够阅读并解答出甲、乙两题中的某一道题,他应该选择甲题还是乙题?
(2)某次考试中,某班40名同学中选择甲、乙两题的人数相等,在16名该选做题获得满分的同学中有10人选的是甲题,则在犯错误概率不超过1%的情况下,判断该选做题得满分是否与选题有关?
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
参考数据:
P(K2≥k00.10.010.001
k02.7066.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=2|x+1|-x的最小值为b.
(Ⅰ)求b;
(Ⅱ)已知a≥b,求证:$\sqrt{2a-b}+\sqrt{{a^2}-b}≥a$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆P过A(-8,0),B(2,0),C(0,4)三点,圆Q:x2+y2-2ay+a2-4=0.
(1)求圆P的方程;
(2)如果圆P和圆Q相外切,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-4,x),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则x的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$\overrightarrow{a}$与$\overrightarrow{b}$均为单位向量,它们的夹角为120°,那么|$\overrightarrow{a}$+3$\overrightarrow{b}$|=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为做好2022年北京冬季奥运会的宣传工作,组委会计划从某大学选取若干大学生志愿者,某记者在该大学随机调查了1000名大学生,以了解他们是否愿意做志愿者工作,得到的数据如表所示:
愿意做志愿者工作不愿意做志愿者工作合计
男大学生610
女大学生90
合计800
(1)根据题意完成表格;
(2)是否有95%的把握认为愿意做志愿者工作与性别有关?
参考公式及数据:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥K00.250.150.100.050.025
K01.3232.0722.7063.8415.024

查看答案和解析>>

同步练习册答案