精英家教网 > 高中数学 > 题目详情
5.定义方程f(x)=f'(x)的实数根x0叫做函数f(x)的“新驻点”,如果函数g(x)=x,h(x)=ln(x+1),φ(x)=cosx($x∈(\frac{π}{2},\;π)$)的“新驻点”分别为α,β,γ,则α,β,γ从小到大排列是β、α、φ.

分析 根据题意,分别对g(x),h(x),φ(x)求导,令g′(x)=g(x),h′(x)=h(x),φ′(x)=φ(x),则它们的根分别为α,β,γ,比较大小即可得答案.

解答 解:对于函数g(x)=x,有g′(x)=1,
若g(x)=g′(x),即x=1,
g(x)=x的“新驻点”为α,
则有α=1,
对于h(x)=ln(x+1),有h′(x)=$\frac{1}{x+1}$,
若h(x)=h′(x),即ln(x+1)=$\frac{1}{x+1}$,
h(x)=ln(x+1)的新驻点为β,
则有ln(β+1)=$\frac{1}{β+1}$,
分析可得:0<β<1,
对于φ(x)=cosx,有φ′(x)=-sinx,
若φ(x)=φ′(x),即cosx=-sinx,
则有tanx=-1,
φ(x)=cosx的新驻点为φ,
则有φ=$\frac{3π}{4}$,
综合可得:β<α<φ;
故答案为:β、α、φ.

点评 本题考查导数的计算,涉及方程根的大小的分析讨论,其中对对数方程和三次方程根的范围的讨论是一个难点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知直线l:mx-y-m+2=0与圆C:x2+y2+4x-4=0交于A,B两点,若△ABC为直角三角形,则m=0或$\frac{12}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(Ⅰ) 比较下列两组实数的大小:
①$\sqrt{2}$-1与2-$\sqrt{3}$;           ②2-$\sqrt{3}$与$\sqrt{6}$-$\sqrt{5}$;
(Ⅱ) 类比以上结论,写出一个更具一般意义的结论,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$=(-1,1),$\overrightarrow{b}$=(1,5),则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知直线l:mx-y=1,若直线l与直线x-(m-1)y=2垂直,则m的值为$\frac{1}{2}$,动直线l:mx-y=1被圆C:x2-2x+y2-8=0截得的最短弦长为2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=log2(x2-ax-3a)在区间(-∞,-2]上是减函数,则实数a的取值范围是(  )
A.[-4,4)B.(-4,4]C.(-∞,4)D.(-∞,4)∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=x3+x2+ax,a∈R是常数,若曲线y=f(x)有且仅有一条平行于直线y=x的切线,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线3x+4y+12=0与圆(x+1)2+(y+1)2=9的位置关系是(  )
A.过圆心B.相切C.相离D.相交

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.当曲线y=-$\sqrt{4-{x}^{2}}$与直线kx-y+2k-4=0有两个相异的交点时,实数k的取值范围是(  )
A.(0,$\frac{3}{4}$)B.($\frac{5}{12}$,$\frac{3}{4}$]C.($\frac{3}{4}$,1]D.($\frac{3}{4}$,+∞)

查看答案和解析>>

同步练习册答案