精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=$\frac{m•{4}^{x}+1}{{2}^{x}}$-m(m∈R).
(1)若函数f(x)有零点,求实数m的取值范围;
(2)若对任意的x∈[-1,0],都有0≤f(x)≤1,求实数m的取值范围.

分析 (1)依题意只需m•4x-m•2x+1=0有解,⇒m=-$\frac{1}{{4}^{x}-{2}^{x}}$,(x≠0),求出-$\frac{1}{{4}^{x}-{2}^{x}}$的范围,即可求得实数m的取值范围;
(2)令t=2x,($\frac{1}{2}≤$t≤1),只需$\left\{\begin{array}{l}{mt+\frac{1}{t}-m≥0}\\{mt+\frac{1}{t}-m≤1}\end{array}\right.$在t∈[$\frac{1}{2}$,1)恒成立即可,分别求解实数m的取值范围即可.

解答 解:(1)∵函数f(x)有零点,∴方程$\frac{m•{4}^{x}+1}{{2}^{x}}$-m=0有解,
?m•4x-m•2x+1=0有解,⇒m=-$\frac{1}{{4}^{x}-{2}^{x}}$,(x≠0),
令t=2x,(t>0),4x-2x=t2-t$∈[-\frac{1}{4},0)∪(0,+∞)$,
则-$\frac{1}{{4}^{x}-{2}^{x}}$∈[4,+∞)∪(-∞,0),
∴实数m的取值范围为:[4,+∞)∪(-∞,0);
(2)令t=2x,($\frac{1}{2}≤$t≤1),
对任意的x∈[-1,0],都有0≤f(x)≤1,
当x=0,即t=1时,显然成立,
只需$\left\{\begin{array}{l}{mt+\frac{1}{t}-m≥0}\\{mt+\frac{1}{t}-m≤1}\end{array}\right.$在t∈[$\frac{1}{2}$,1)恒成立即可.
①m$≤-\frac{1}{{t}^{2}-t}$,
在t∈[$\frac{1}{2}$,1)时,-$\frac{1}{{t}^{2}-t}∈[4,+∞)$,∴m≤4,
$②mt+\frac{1}{t}-m≤1$⇒m≤$\frac{1}{t}$,⇒m≤1,
综上,实数m的取值范围为(-∞,1].

点评 本题考查了函数零点问题、不等式恒成立问题处理方法,考查了分类思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知等比数列{an}的前n项和为Sn,a1=1,若3S1,2S2,S3成等差数列,则an=(  )
A.2n-1B.1或3n-1C.3nD.3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数$y={x^2}(1-3x),x∈(0,\frac{1}{3})$的最大值是$\frac{4}{243}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的框图,若输出的sum的值为2047,则条件框中应填写的是(  )
A.i<9?B.i<10?C.i<11?D.i<12?
2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0,
(1)当a为何值时,直线l与圆C相切.
(2)当直线l与圆C相交于A、B两点,且|AB|=2$\sqrt{2}$时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知a>0,函数$f(x)=a{x^3}+\frac{12}{a}lnx$,则f'(1)的最小值是12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某科考试题中有甲、乙两道不同类型的选做题,且每道题满分为10分,每位考生需从中任选一题作答.
(1)A同学将自己在该考试中历次的选题及得分情况统计如下:
选甲题8次,得分分别为:6,10,10,6,6,10,6,10
选乙题10次,得分分别为:5,10,9,8,9,8,10,8,5,8
某次考试中,A同学的剩余时间仅够阅读并解答出甲、乙两题中的某一道题,他应该选择甲题还是乙题?
(2)某次考试中,某班40名同学中选择甲、乙两题的人数相等,在16名该选做题获得满分的同学中有10人选的是甲题,则在犯错误概率不超过1%的情况下,判断该选做题得满分是否与选题有关?
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
参考数据:
P(K2≥k00.10.010.001
k02.7066.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆P过A(-8,0),B(2,0),C(0,4)三点,圆Q:x2+y2-2ay+a2-4=0.
(1)求圆P的方程;
(2)如果圆P和圆Q相外切,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数$\frac{5-i}{1+i}$(i是虚数单位)的在复平面上对应的点位于第         象限(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案