精英家教网 > 高中数学 > 题目详情
20.已知f(x)=$\frac{1}{x}$,则$\underset{lim}{△x→0}$$\frac{f(2+3△x)-f(2)}{△x}$的值是(  )
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

分析 根据函数的解析式和极限的定义,计算即可.

解答 解:∵f(x)=$\frac{1}{x}$,
∴$\underset{lim}{△x→0}$$\frac{f(2+3△x)-f(2)}{△x}$=$\underset{lim}{△x→∞}$$\frac{\frac{1}{2+3△x}-\frac{1}{2}}{△x}$
=$\underset{lim}{△x→∞}$[-$\frac{3}{2(2+3△x)}$]
=-$\frac{3}{4}$.
故选:D.

点评 本题考查了极限的定义与运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知实数a1,a2,b1,b2,b3满足数列1,a1,a2,9是等差数列,数列1,b1,b2,b3,9是等比数列,则$\frac{{b}_{2}}{{a}_{1}+{a}_{2}}$的值为(  )
A.±$\frac{3}{10}$B.$\frac{3}{10}$C.-$\frac{3}{10}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知圆C:(x-1)2+(y-a)2=16,若直线ax+y-2=0与圆C相交于AB两点,且CA⊥CB,则实数a的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知圆C:(x-2)2+y2=4,点P在直线l:y=x+3上,若圆C上存在两点A、B使得$\overrightarrow{PA}$=3$\overrightarrow{PB}$,则点P的横坐标的取值范围是$[{\frac{{-1-\sqrt{7}}}{2},\frac{{-1+\sqrt{7}}}{2}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设地球半径为R,若甲位于北纬45°东经120°,乙位于北纬45°西经150°,则甲、乙两地的球面距离为$\frac{π}{3}$R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若直线y=kx+2与曲线$x=\sqrt{{y^2}+6}$交于不同的两点,那么k的取值范围是(  )
A.($-\frac{{\sqrt{15}}}{3},\frac{{\sqrt{15}}}{3}$)B.($0,\frac{{\sqrt{15}}}{3}$)C.($-\frac{{\sqrt{15}}}{3},0$)D.($-\frac{{\sqrt{15}}}{3},-1$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.利用独立性检验来考查两个分类变量X,Y是否有关系,当随机变量k的值(  )
A.越大,“X与Y有关系”成立的可能性越大
B.越大,“X与Y有关系”成立的可能性越小
C.越小,“X与Y有关系”成立的可能性越大
D.与“X与Y有关系”成立的可能性无关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某地区气象台统计,该地区下雨的概率是$\frac{4}{15}$,刮风的概率为$\frac{2}{5}$,既刮风又下雨的概率为$\frac{1}{10}$,设A为下雨,B为刮风,那么P(B|A)等于$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$经过点$P(2,\sqrt{2})$,一个焦点F的坐标为(2,0).
(1)求椭圆C的方程;
(2)设直线l:y=kx+1与椭圆C交于A,B两点,O为坐标原点,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范围.

查看答案和解析>>

同步练习册答案