精英家教网 > 高中数学 > 题目详情
15.设地球半径为R,若甲位于北纬45°东经120°,乙位于北纬45°西经150°,则甲、乙两地的球面距离为$\frac{π}{3}$R.

分析 根据甲、乙两地在同一纬度圈上,计算经度差,求出甲、乙两地对应的AB弦长及球心角,再求球面距离.

解答 解:如图所示,地球表面上甲、乙两地对应的AB的小圆半径是
QA=Rsin45°=$\frac{\sqrt{2}}{2}$R,经度差是90°,
所以AB=$\sqrt{2}$QA=$\sqrt{2}$×$\frac{\sqrt{2}}{2}$R=R;
所以球心角∠AOB=60°=$\frac{π}{3}$,
所以甲、乙两地的球面距离是l=αR=$\frac{π}{3}$R
故答案为:$\frac{π}{3}$R.

点评 本题考查了球面距离及其计算问题,也考查了空间想象能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.若二次函数f(x)=ax2+bx+c(a、b∈R)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在区间[-1,-1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.对实数a、b定义运算a⊕b=$\frac{a+b}{1+ab}$,设定义域为R的奇函数f(x),当x∈(0,1)时,f(x)=2x⊕2x
(1)讨论f(x)在π∈(0,1)上的单调性;
(2)求f(x)在(-1,1)上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)={e^{\frac{x}{2}}}$,g(x)=2+lnx,若对任意的实数a,存在实数b∈(0,+∞),使得f(a)=g(b),则b-a的最小值为(  )
A.1-2ln2B.-ln2C.ln2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=|x-3|-|x+1|,则关于f(x)的描述正确的是(  )
A.函数f(x)的图象关于直线x=1对称B.函数f(x)的图象关于点(1,0)对称
C.函数f(x)有最小值,无最大值D.函数f(x)在(-∞,-1]上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=$\frac{1}{x}$,则$\underset{lim}{△x→0}$$\frac{f(2+3△x)-f(2)}{△x}$的值是(  )
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.正项数列{an}的前n项和为Sn,满足an=2$\sqrt{{S}_{n}}$-1.若对任意的正整数p、q(p≠q),不等式SP+Sq>kSp+q恒成立,则实数k的取值范围为$(-∞,\frac{1}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知p:-x2+8x+20≥0,q:x2-2x+1-m2≤0(m>0),若p是q充分不必要条件,则实数m的取值范围是m≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.圆x2+y2=4与圆(x-3)2+y2=1的位置关系为(  )
A.内切B.相交C.外切D.相离

查看答案和解析>>

同步练习册答案