精英家教网 > 高中数学 > 题目详情
5.圆x2+y2=4与圆(x-3)2+y2=1的位置关系为(  )
A.内切B.相交C.外切D.相离

分析 根据题意,由两圆的标准方程分析可得两圆的圆心与半径,分析计算两圆的圆心距与半径和之间的关系,即可得答案.

解答 解:根据题意,设圆x2+y2=4的圆心为M,半径为r1,则M(0,0),r1=2,
圆(x-3)2+y2=1的圆心为N,半径为r2,N(3,0),r2=1,
则有|MN|=r1+r2=3,
则两圆外切;
故选:C.

点评 本题考查圆与圆的位置关系,涉及圆的标准方程,注意两圆位置关系的判定方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设地球半径为R,若甲位于北纬45°东经120°,乙位于北纬45°西经150°,则甲、乙两地的球面距离为$\frac{π}{3}$R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知p:|x-a|<3(a为常数);q:代数式$\sqrt{x+1}+lg(6-x)$有意义.
(1)若a=1,求使“p∧q”为真命题的实数x的取值范围;
(2)若p是q成立的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.△ABC面积为$\frac{15\sqrt{3}}{4}$,且a=3,c=5,则sinB=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知平面直角坐标系内三点A、B、C在一条直线上,满足$\overrightarrow{OA}$=(-3,m+1),$\overrightarrow{OB}$=(n,3),$\overrightarrow{OC}$=(7,4),且$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,其中O为坐标原点.
(1)求实数m、n的值;
(2)若点A的纵坐标小于3,求cos∠AOC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$经过点$P(2,\sqrt{2})$,一个焦点F的坐标为(2,0).
(1)求椭圆C的方程;
(2)设直线l:y=kx+1与椭圆C交于A,B两点,O为坐标原点,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知二次函数f(x)=x2+mx-m(x∈R)同时满足:
①在定义域内存在0<x1<x2,使得f(x1)>f(x2)成立;
②不等式f(x)≤0的解集有且只有一个元素;数列{an}的前n项和为Sn,Sn=f(n),n≥1,n∈N.
(1)求f(x)的表达式;
(2)求数列{an}的通项公式;
(3)设${b_n}={(\sqrt{2})^{{a_n}+5}}$,${c_n}=\frac{{6b_n^2+{b_{n+1}}-{b_n}}}{{{b_n}{b_{n+1}}}}$,{cn}的前n项和为Tn,若Tn>3n+k对任意n∈N,且n≥2恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线x2=4y焦点为F,点A,B,C为该抛物线上不同的三点,且满足$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$.
(1)求|FA|+|FB|+|FC|;
(2)若直线AB交y轴于点D(0,b),求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求下列函数的全微分.
(1)z=ln(3x-2y);
(2)z=$\frac{x+y}{x-y}$.

查看答案和解析>>

同步练习册答案