精英家教网 > 高中数学 > 题目详情
14.已知抛物线x2=4y焦点为F,点A,B,C为该抛物线上不同的三点,且满足$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$.
(1)求|FA|+|FB|+|FC|;
(2)若直线AB交y轴于点D(0,b),求实数b的取值范围.

分析 (1)设A(x1,y1),B(x2,y2),C(x3,y3),求得抛物线的焦点坐标,准线方程,运用抛物线的定义和向量的坐标表示,可得所求和;
(2)显然直线AB斜率存在,设为k,则直线AB方程为y=kx+b,代入抛物线的方程,运用判别式大于0和韦达定理,结合向量的坐标表示,求出C的坐标,代入抛物线的方程,可得b的范围,讨论b=1不成立,即可得到所求范围.

解答 解:设A(x1,y1),B(x2,y2),C(x3,y3),
由抛物线x2=4y得焦点F坐标为(0,1),
所以$\overrightarrow{FA}$=(x1,y1-1),$\overrightarrow{FB}$=(x2,y2-1),$\overrightarrow{FC}$=(x3,y3-1),
所以由$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$,得$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}+{x}_{3}=0}\\{{y}_{1}+{y}_{2}+{y}_{3}-3=0}\end{array}\right.$,(*)
(1)易得抛物线准线为y=-1,
由抛物线定义可知|FA|=y1+1,|FB|=y2+1,|FC|=y3+1,
所以|FA|+|FB|+|FC|=y1+y2+y3+3=6;
(2)显然直线AB斜率存在,设为k,则直线AB方程为y=kx+b,
联立$\left\{\begin{array}{l}{y=kx+b}\\{{x}^{2}=4y}\end{array}\right.$消去y得:x2-4kx-4b=0,
所以△=16k2+16b>0即k2+b>0…①
且x1+x2=4k,x1x2=-4b,所以y1+y2=k(x1+x2)+2b=4k2+2b,
代入式子(*)得$\left\{\begin{array}{l}{{x}_{3}=-4k}\\{{y}_{3}=3-4{k}^{2}-2b}\end{array}\right.$又点C也在抛物线上,
所以16k2=12-16k2-8b,即k2=$\frac{3-2b}{8}$…②,
由①,②及k2≥0可解得$\left\{\begin{array}{l}{3-2b≥0}\\{3+6b>0}\end{array}\right.$ 即-$\frac{1}{2}$<b≤$\frac{3}{2}$,
又当b=1时,直线AB过点F,此时A,B,F三点共线,由$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$,
得$\overrightarrow{FC}$与$\overrightarrow{FA}$共线,即点C也在直线AB上,此时点C必与A,B之一重合,
不满足点A,B,C为该抛物线上不同的三点,所以b≠1,
所以实数b的取值范围为(-$\frac{1}{2}$,1)∪(1,$\frac{3}{2}$].

点评 本题考查抛物线的定义、方程和性质,考查直线方程和抛物线的方程联立,运用韦达定理,同时考查向量共线和坐标表示,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知p:-x2+8x+20≥0,q:x2-2x+1-m2≤0(m>0),若p是q充分不必要条件,则实数m的取值范围是m≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.圆x2+y2=4与圆(x-3)2+y2=1的位置关系为(  )
A.内切B.相交C.外切D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.曲线f(x)=ex+x+1在点(0,f(0))处的切线方程为y=2x+2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知抛物线C:y2=4x焦点为F,点D为其准线与x轴的交点,过点F的直线l与抛物线相交于A,B两点,则△DAB的面积S的取值范围为(  )
A.[5,+∞)B.[2,+∞)C.[4,+∞)D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的前n项和为${S_n}=3{n^2}+8n$,{bn}为等差数列,且b1=4,b3=10,则数列$\left\{{\frac{{{{({a_n}+1)}^{n+1}}}}{{3{{({b_n}+2)}^n}}}}\right\}$的前n项和Tn=n×2n+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用数学归纳法证明不等式$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n}}$≤n(n∈N*)时,从n=k到n=k+1不等式左边增添的项数是(  )
A.kB.2k-1C.2kD.2k+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的通项公式为an=3n+2,从这个数列中依次取出第1,4,7,10,…,3n-2项,按原来的顺序排成新数列{bn},求{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.判断居民户是否小康的一个重要指标是居民户的年收入,某市从辖区内随机抽取100个居民户,对每个居民户的年收入与年结余的情况进行分析,设第i个居民户的年收入xi(万元),年结余yi(万元),经过数据处理的:$\sum_{i=1}^{100}{x}_{i}$=400,$\sum_{i=1}^{100}{y}_{i}$=100,$\sum_{i=1}^{100}{x}_{i}{y}_{i}$=900,$\sum_{i=1}^{100}{{x}^{2}}_{i}$=2850.
(1)已知家庭的年结余y对年收入x具有线性相关关系,求线性回归方程;
(2)若该市的居民户年结余不低于5万,即称该居民户已达小康生活,请预测居民户达到小康生活的最低年收入应为多少万元?
附:在y=bx+a中,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}^{2}}_{i}-n{\overline{x}}^{2}}$,a=$\overline{y}-b\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值.

查看答案和解析>>

同步练习册答案