精英家教网 > 高中数学 > 题目详情
6.已知数列{an}的通项公式为an=3n+2,从这个数列中依次取出第1,4,7,10,…,3n-2项,按原来的顺序排成新数列{bn},求{bn}的通项公式.

分析 由b1=a1=3×1+2=5,b2=a4=3×4+2=14,b3=a7=3×7+2=23,b4=a10=3×10+2=32,…bn=a3n-2=3(3n-2)+2=9n-4.由此能求出{bn}的通项公式.

解答 解:∵数列{an}的通项公式为an=3n+2,
从这个数列中依次取出第1,4,7,10,…,3n-2项,按原来的顺序排成新数列{bn},
∴b1=a1=3×1+2=5,
b2=a4=3×4+2=14,
b3=a7=3×7+2=23,
b4=a10=3×10+2=32,

bn=a3n-2=3(3n-2)+2=9n-4.
∴{bn}的通项公式bn=9n-4.

点评 本题考查数列的通项公式的求法,考查等差数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.△ABC面积为$\frac{15\sqrt{3}}{4}$,且a=3,c=5,则sinB=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线x2=4y焦点为F,点A,B,C为该抛物线上不同的三点,且满足$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$.
(1)求|FA|+|FB|+|FC|;
(2)若直线AB交y轴于点D(0,b),求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.由函数y=sin x 的图象经过(  )变换,得到函数 y=sin(2x-$\frac{π}{7}$) 的图象.
A.纵坐标不变,横坐标缩小到原来的$\frac{1}{2}$,再向右平移$\frac{π}{7}$个单位
B.纵坐标不变,向右平移$\frac{π}{7}$个单位,再横坐标缩小到原来的$\frac{1}{2}$
C.纵坐标不变,横坐标扩大到原来的 2 倍,再向左平移$\frac{π}{7}$个单位
D.纵坐标不变,向左平移$\frac{π}{7}$个单位,再横坐标扩大到原来的 2 倍

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.将下列复数化为指数形式和极坐标形式.
(1)$\sqrt{2}$(cos$\frac{π}{4}$+isin$\frac{π}{4}$)
(2)cos75°-isin75°
(3)-cos$\frac{2π}{3}$+isin$\frac{2π}{3}$
(4)-cos1+isin1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.函数f(x)=(log2x)2-log2x2+3,当x∈[1,4]时,f(x)的最大值为m,最小值为n
(1)若角α的始边在x轴的非负半轴上,终边经过点P(m,n),求sinα+cosα的值;
(2)设$g(x)=mcos(nx+\frac{π}{m})-m$,求g(x)在$[0,\frac{π}{2}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求下列函数的全微分.
(1)z=ln(3x-2y);
(2)z=$\frac{x+y}{x-y}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若“?x∈[$\frac{1}{2}$,2],使得2x2-λx+1<0成立”是假命题,则实数λ的取值范围为(-∞,2$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|x-3|+3
(1)求不等式f(x)<2x的解集
(2)求不等式f(x)<6-|x-2|的解集.

查看答案和解析>>

同步练习册答案