精英家教网 > 高中数学 > 题目详情
11.函数f(x)=(log2x)2-log2x2+3,当x∈[1,4]时,f(x)的最大值为m,最小值为n
(1)若角α的始边在x轴的非负半轴上,终边经过点P(m,n),求sinα+cosα的值;
(2)设$g(x)=mcos(nx+\frac{π}{m})-m$,求g(x)在$[0,\frac{π}{2}]$上的值域.

分析 (1)令t=log2x则t∈[0,2]此时函数可能化为y=t2-2t+3
由y=t2-2t+3是开口朝上,对称轴为x=1的抛物线,可得m=3,n=2
由三解函数定义有$sinα+cosα=\frac{m+n}{{\sqrt{{m^2}+{n^2}}}}=\frac{{5\sqrt{13}}}{13}$;
(2)$g(x)=3cos(2x+\frac{π}{3})-3$,令$θ=2x+\frac{π}{3}$,
则$θ∈[\frac{π}{3},\frac{4}{3}π]$,$cosθ∈[-1,\frac{1}{2}]$,即可得g(x)的值域.

解答 解:(1)令t=log2x则t∈[0,2]此时函数可能化为y=t2-2t+3
∵y=t2-2t+3是开口朝上,对称轴为x=1的抛物线,
∴当t=1时,ymin=2;
当t=0或2时,ymax=3,
∴m=3,n=2…(3分)
由三解函数定义有$sinα+cosα=\frac{m+n}{{\sqrt{{m^2}+{n^2}}}}=\frac{{5\sqrt{13}}}{13}$…(6分)
(2)$g(x)=3cos(2x+\frac{π}{3})-3$
令$θ=2x+\frac{π}{3}$,则$θ∈[\frac{π}{3},\frac{4}{3}π]$,∴$cosθ∈[-1,\frac{1}{2}]$,
∴g(x)的值域为[-6,-$\frac{3}{2}$]…(12分)

点评 本题考查了换元法求值域、三角函数值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知$|{\overrightarrow{OA}}|=1$,$|{\overrightarrow{OB}}|=\sqrt{3}$,向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夹角为90°,点C在AB上,且∠AOC=30°.设$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),求$\frac{m}{n}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的前n项和为${S_n}=3{n^2}+8n$,{bn}为等差数列,且b1=4,b3=10,则数列$\left\{{\frac{{{{({a_n}+1)}^{n+1}}}}{{3{{({b_n}+2)}^n}}}}\right\}$的前n项和Tn=n×2n+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(  )
A.y=$\frac{1}{x}$B.y=5xC.y=-x2+1D.y=lg|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的通项公式为an=3n+2,从这个数列中依次取出第1,4,7,10,…,3n-2项,按原来的顺序排成新数列{bn},求{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线$\left\{\begin{array}{l}{x=3+t}\\{y=2-2t}\end{array}\right.$(t为参数)的斜率为(  )
A.2B.-2C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|-5<x<2},B={x|x>1},则A∪B等于(  )
A.{x|x>-5}B.{x|-5<x<1}C.{x|x>1}D.{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.参数方程$\left\{\begin{array}{l}x=1+\frac{1}{t}\\ y=1-\frac{1}{t}\end{array}\right.$(t为参数),化为一般方程为x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,已知AB=AC=4,BC=2,∠B的平分线交AC于点D,则$\overrightarrow{AC}$•$\overrightarrow{BD}$的值为-$\frac{10}{3}$.

查看答案和解析>>

同步练习册答案