精英家教网 > 高中数学 > 题目详情
19.已知数列{an}的前n项和为${S_n}=3{n^2}+8n$,{bn}为等差数列,且b1=4,b3=10,则数列$\left\{{\frac{{{{({a_n}+1)}^{n+1}}}}{{3{{({b_n}+2)}^n}}}}\right\}$的前n项和Tn=n×2n+2

分析 推导出an=6n+5,bn=3n+1,从而$\frac{({a}_{n}+1)^{n+1}}{3({b}_{n}+2)^{n}}$=$\frac{(6n+6)^{n+1}}{3(3n+3)^{n}}$=(n+1)•2n+1,由此利用错位相减法能求出数列$\left\{{\frac{{{{({a_n}+1)}^{n+1}}}}{{3{{({b_n}+2)}^n}}}}\right\}$的前n项和.

解答 解:∵数列{an}的前n项和为${S_n}=3{n^2}+8n$,
∴a1=S1=3+8=11,
an=Sn-Sn-1=(3n2+8n)-[3(n-1)2+8(n-1)]=6n+5,
n=1时,上式成立,
∴an=6n+5.
∵{bn}为等差数列,且b1=4,b3=10,
∴b3=4+2d=10,解得d=3,
∴bn=4+(n-1)×3=3n+1,
∴$\frac{({a}_{n}+1)^{n+1}}{3({b}_{n}+2)^{n}}$=$\frac{(6n+6)^{n+1}}{3(3n+3)^{n}}$=(n+1)•2n+1
∴数列$\left\{{\frac{{{{({a_n}+1)}^{n+1}}}}{{3{{({b_n}+2)}^n}}}}\right\}$的前n项和:
Tn=2×22+3×23+4×24+…+(n+1)×2n+1,①
2Tn=2×23+3×24+4×25+…+(n+1)×2n+2,②
①-②,得:
-Tn=8+23+24+…+2n+1-(n+1)×2n+2
=8+$\frac{8(1-{2}^{n-1})}{1-2}$-(n+1)×2n+2
=-n×2n+2
∴Tn=n×2n+2
故答案为:n×2n+2

点评 本题考查数列的前n项和的求法,考查等差数列、错位相减法等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.某地区气象台统计,该地区下雨的概率是$\frac{4}{15}$,刮风的概率为$\frac{2}{5}$,既刮风又下雨的概率为$\frac{1}{10}$,设A为下雨,B为刮风,那么P(B|A)等于$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$经过点$P(2,\sqrt{2})$,一个焦点F的坐标为(2,0).
(1)求椭圆C的方程;
(2)设直线l:y=kx+1与椭圆C交于A,B两点,O为坐标原点,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.根据如下样本数据:
x34567
y4.02.50.5-0.5-2.0
得到的回归方程为$\stackrel{∧}{y}$=bx+a.若a=8.4,则估计x,y的变化时,若x每增加1个单位,则y就(  )
A.增加1.2个单位B.减少1.5个单位C.减少2个单位D.减少1.2个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线x2=4y焦点为F,点A,B,C为该抛物线上不同的三点,且满足$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$.
(1)求|FA|+|FB|+|FC|;
(2)若直线AB交y轴于点D(0,b),求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.执行如图所示的程序框图,运行相应的程序,输出的结果是$\frac{8}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.由函数y=sin x 的图象经过(  )变换,得到函数 y=sin(2x-$\frac{π}{7}$) 的图象.
A.纵坐标不变,横坐标缩小到原来的$\frac{1}{2}$,再向右平移$\frac{π}{7}$个单位
B.纵坐标不变,向右平移$\frac{π}{7}$个单位,再横坐标缩小到原来的$\frac{1}{2}$
C.纵坐标不变,横坐标扩大到原来的 2 倍,再向左平移$\frac{π}{7}$个单位
D.纵坐标不变,向左平移$\frac{π}{7}$个单位,再横坐标扩大到原来的 2 倍

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.函数f(x)=(log2x)2-log2x2+3,当x∈[1,4]时,f(x)的最大值为m,最小值为n
(1)若角α的始边在x轴的非负半轴上,终边经过点P(m,n),求sinα+cosα的值;
(2)设$g(x)=mcos(nx+\frac{π}{m})-m$,求g(x)在$[0,\frac{π}{2}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知点A(3,0),B(-3,0),|AC|-|BC|=4,则点C轨迹方程是(  )
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1(x<0)B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1(x>0)D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=0(x<0)

查看答案和解析>>

同步练习册答案