精英家教网 > 高中数学 > 题目详情
4.执行如图所示的程序框图,运行相应的程序,输出的结果是$\frac{8}{5}$.

分析 由已知中的程序语句,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:模拟程序的运行,可得
x=1,y=2,z=3
满足条件z<12,执行循环体,x=2,y=3,z=5
满足条件z<12,执行循环体,x=3,y=5,z=8
满足条件z<12,执行循环体,x=5,y=8,z=13
不满足条件z<12,退出循环,输出$\frac{y}{x}$的值为$\frac{8}{5}$.
故答案为:$\frac{8}{5}$.

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-4,x),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则x的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=cos(2x-$\frac{2π}{3}$)+2cos2x+k的最小值为-3
(1)求常数k的值;
(2)若f(x0)=-$\frac{7}{5}$,x0∈[0,$\frac{π}{4}$],求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为做好2022年北京冬季奥运会的宣传工作,组委会计划从某大学选取若干大学生志愿者,某记者在该大学随机调查了1000名大学生,以了解他们是否愿意做志愿者工作,得到的数据如表所示:
愿意做志愿者工作不愿意做志愿者工作合计
男大学生610
女大学生90
合计800
(1)根据题意完成表格;
(2)是否有95%的把握认为愿意做志愿者工作与性别有关?
参考公式及数据:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥K00.250.150.100.050.025
K01.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的前n项和为${S_n}=3{n^2}+8n$,{bn}为等差数列,且b1=4,b3=10,则数列$\left\{{\frac{{{{({a_n}+1)}^{n+1}}}}{{3{{({b_n}+2)}^n}}}}\right\}$的前n项和Tn=n×2n+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠CDA=∠BAD=90°,AD=DC=$\sqrt{2}$,AB=PA=2$\sqrt{2}$,且E为线段PB上的一动点.
(1)若E为线段PB的中点,求证:CE∥平面PAD;
(2)当直线CE与平面PAC所成角小于$\frac{π}{3}$,求PE长度的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(  )
A.y=$\frac{1}{x}$B.y=5xC.y=-x2+1D.y=lg|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线$\left\{\begin{array}{l}{x=3+t}\\{y=2-2t}\end{array}\right.$(t为参数)的斜率为(  )
A.2B.-2C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)是定义在R上的奇函数,且f(1)=1,对于任意的x1,x2∈R(x1≠x2),都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$.
(1)解关于x的不等式f(x2-3ax)+f(2a2)<0;
(2)若f(x)≤m2-2am+1对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案