精英家教网 > 高中数学 > 题目详情
20.已知平面直角坐标系内三点A、B、C在一条直线上,满足$\overrightarrow{OA}$=(-3,m+1),$\overrightarrow{OB}$=(n,3),$\overrightarrow{OC}$=(7,4),且$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,其中O为坐标原点.
(1)求实数m、n的值;
(2)若点A的纵坐标小于3,求cos∠AOC的值.

分析 (1)依题意,由$\overrightarrow{OA}$•$\overrightarrow{OB}$=-3n+3m+3=0,可得n-m=1①,再由三点A、B、C在一条直线上,$\overrightarrow{AB}$=k$\overrightarrow{AC}$,即(n+3,3-(m+1))=k(10,3-m),整理可得:$\frac{n+3}{10}$=$\frac{2-m}{3-m}$②,
联立①②可求实数m、n的值;
(2)利用点A的纵坐标小于3,结合(1)的结果,可得m=1,n=2,于是$\overrightarrow{OA}$=(-3,2),又$\overrightarrow{OC}$=(7,4),利用平面向量的数量积可求cos∠AOC的值.

解答 解:(1)∵$\overrightarrow{OA}$=(-3,m+1),$\overrightarrow{OB}$=(n,3),且$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,
∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=-3n+3m+3=0,即n-m=1①,
又$\overrightarrow{OC}$=(7,4),∴$\overrightarrow{AC}$=(7-(-3),4-(m+1))=(10,3-m),
∵三点A、B、C在一条直线上,
∴$\overrightarrow{AB}$=k$\overrightarrow{AC}$,即(n+3,3-(m+1))=k(10,3-m),整理得:$\frac{n+3}{10}$=$\frac{2-m}{3-m}$②,
联立①②,解得:$\left\{\begin{array}{l}{m=1}\\{n=2}\end{array}\right.$或$\left\{\begin{array}{l}{m=8}\\{n=9}\end{array}\right.$.
(2)∵点A的纵坐标小于3,
∴m+1<3,即m<2,∴m=1,n=2,
∴$\overrightarrow{OA}$=(-3,2),又$\overrightarrow{OC}$=(7,4),
∴cos∠AOC=$\frac{\overrightarrow{OA}•\overrightarrow{OC}}{|\overrightarrow{OA}||\overrightarrow{OC}|}$=$\frac{-3×7+2×4}{\sqrt{{(-3)}^{2}{+2}^{2}}•\sqrt{{7}^{2}{+4}^{2}}}$=$\frac{-13}{\sqrt{13}•\sqrt{65}}$=-$\frac{\sqrt{5}}{5}$.

点评 本题考查平面向量数量积的运算,考查平面向量垂直、共线向量基本定理的应用,考查方程思想、化归思想与运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=|x-3|-|x+1|,则关于f(x)的描述正确的是(  )
A.函数f(x)的图象关于直线x=1对称B.函数f(x)的图象关于点(1,0)对称
C.函数f(x)有最小值,无最大值D.函数f(x)在(-∞,-1]上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,四棱锥P-ABCD中平面PAB⊥平面ABCD,底面ABCD是正方形.点M是棱PC的中点
(1)记平面ADM与平面PBC的交线是l,试判断直线l与BC的位置关系,并加以证明.
(2)若$PA=AB=1,PB=\sqrt{2}$,求证PB⊥平面ADM,并求直线PC与平面ADM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设{an}是等差数列,{bn}为等比数列,其公比q≠1,且bi>0(i=1,2,3,…,n),若a1=b1,a13=b13,则有(  )
A.a7=b7B.a7>b7或a7<b7C.a7<b7D.a7>b7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a>0,设p:实数x满足x2-4ax+3a2<0,q:实数x满足(x-3)2<1.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.圆x2+y2=4与圆(x-3)2+y2=1的位置关系为(  )
A.内切B.相交C.外切D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,设A,B两点在涪江的两岸,一测量者在A的同侧所在的江岸边选定一点C,
测出AC的距离为50m,∠ACB=45°,∠CAB=105°.则A,B两点间的距离为(  )
A.$50\sqrt{2}$mB.50mC.$50\sqrt{3}$mD.$50\sqrt{6}$m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知抛物线C:y2=4x焦点为F,点D为其准线与x轴的交点,过点F的直线l与抛物线相交于A,B两点,则△DAB的面积S的取值范围为(  )
A.[5,+∞)B.[2,+∞)C.[4,+∞)D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为2ρsinθ+ρcosθ=10,曲线C1:$\left\{\begin{array}{l}{x=3cosα}\\{y=2sinα}\end{array}\right.$(α为参数).
(1)求曲线C1的普通方程;
(2)若点M在曲线C1上运动,试求出M到曲线C的距离的最小值.

查看答案和解析>>

同步练习册答案