精英家教网 > 高中数学 > 题目详情
18.若二次函数f(x)=ax2+bx+c(a、b∈R)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在区间[-1,-1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围.

分析 (1)由f(0)=1,求出c=1,根据f(x+1)-f(x)=2x,通过系数相等,从而求出a,b的值;
(2)f(x)>2x+m等价于x2-x+1>2x+m,即x2-3x+1-m>0,要使此不等式在[-1,-1]上恒成立,只需使函数g(x)=x2-3x+1-m在[-1,-1]的最小值大于0即可,求出g(x)的最小值即可.

解答 解:(1)由f(0)=1得,c=1.∴f(x)=ax2+bx+1…(2分)
又f(x+1)-f(x)=2x,∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x,
即2ax+a+b=2x,…(4分)
∴$\left\{\begin{array}{l}{2a=2}\\{a+b=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=1}\\{b=-1}\end{array}\right.$…(5分)
∴f(x)=x2-x+1…(6分)
(2)f(x)>2x+m等价于x2-x+1>2x+m,即x2-3x+1-m>0,…(7分)
要使此不等式在[-1,-1]上恒成立,只需使函数g(x)=x2-3x+1-m在[-1,-1]的最小值大于0即可.       …(9分)
∵g(x)=x2-3x+1-m在[-1,-1]上单调递减,
∴g(x)min=g(1)=-m-1,…(10分)
由-m-1>0,得m<-1…(11分)
∴实数m的取值范围是(-∞,-1)…(12分)

点评 本题考查了求二次函数的解析式问题,考查了求参数的范围问题,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2a•4x-2x-1
(1)当a=1时,求函数f(x)在x∈[-4,0]上的值域;
(2)若关于x的方程f(x)=0有实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系中,曲线C1的方程为(x-2)2+y2=4.以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2,射线C3的极坐标方程为$θ=\frac{π}{4}(ρ>0)$.
(1)将曲线C1的直角坐标方程化为极坐标方程;
(2)若射线C3与曲线C1、C2分别交于点A、B,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知ω>0,0<φ<π,直线x=$\frac{π}{4}$和x=$\frac{5π}{4}$是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则
(1)求f(x)的解析式;
(2)设h(x)=f(x)+$\sqrt{3}cos(x+\frac{π}{4}),当x∈[{0,π}]时,求h(x)的单调减区间$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设f(x)=|2x-1|+|1-x|
(1)解不等式f(x)≥x+4;
(2)若对任意的x∈R,不等式f(x)≥(m2-3m+3)•|x|恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知实数a1,a2,b1,b2,b3满足数列1,a1,a2,9是等差数列,数列1,b1,b2,b3,9是等比数列,则$\frac{{b}_{2}}{{a}_{1}+{a}_{2}}$的值为(  )
A.±$\frac{3}{10}$B.$\frac{3}{10}$C.-$\frac{3}{10}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某单位共有职工120人,其中男职工有48人,现用分层抽样法抽取一个15人的样本,则女职工应抽取的人数为(  )
A.8B.9C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为了解某班学生喜爱篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知在全部50人中随机抽取1人抽到喜爱篮球的学生的概率为$\frac{3}{5}$.
喜爱篮球不喜爱篮球合计
男生5
女生10
合计50
(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱篮球与性别有关?说明你的理由;
(3)以该班学生的情况来估计全校女生喜爱篮球的情况,用频率代替概率.现从全校女生中抽取3人进一步调查,设抽到喜爱篮球的女生人数为ξ,求ξ的分布列与期望.
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设地球半径为R,若甲位于北纬45°东经120°,乙位于北纬45°西经150°,则甲、乙两地的球面距离为$\frac{π}{3}$R.

查看答案和解析>>

同步练习册答案