分析 (1)根据新定义,化简函数的解析式,从而判断函数的单调性.
(2)根据函数的奇偶性以及条件,求得函数的解析式.
解答 解:(1)定义域为R的奇函数f(x),当x∈(0,1)时,f(x)=2x⊕2x =$\frac{2{•2}^{x}}{1{+2}^{2x}}$=$\frac{2}{\frac{1}{{2}^{x}}{+2}^{x}}$,
在(0,1)上,2x∈(1,2),y=$\frac{1}{{2}^{x}}$+2x单调递增,故f(x)单调递减.
(2)设x<0,则-x>0,f(-x)=$\frac{2}{\frac{1}{{2}^{-x}}{+2}^{-x}}$=$\frac{2}{{2}^{x}{+2}^{-x}}$=$\frac{2{•2}^{x}}{{2}^{2x}+1}$=-f(x),
∴f(x)=-$\frac{2{•2}^{x}}{{2}^{2x}+1}$.
再根据奇函数满足f(0)=0,
可得f(x)=$\left\{\begin{array}{l}{\frac{2{•2}^{x}}{{2}^{2x}+1},x∈(0,1)}\\{0,x=0}\\{-\frac{2{•2}^{x}}{{2}^{2x}+1},x∈(-1,0)}\end{array}\right.$.
点评 本题主要考查新定义,函数的奇偶性的应用,判断函数的单调性,求函数的解析式,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 9 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 喜爱篮球 | 不喜爱篮球 | 合计 | |
| 男生 | 5 | ||
| 女生 | 10 | ||
| 合计 | 50 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com