精英家教网 > 高中数学 > 题目详情

用数学归纳法证明1+2+3+…+(3n+1)=,则当n=k+1时左端应在n=k的基础上加上( )

A.(3k+2)

B.(3k+4)

C.(3k+2)+(3k+3)

D.(3k+2)+(3k+3)+(3k+4)

 

D

【解析】

试题分析:分别使得n=k,和n=k+1代入等式,然后把n=k+1时等式的左端减去n=k时等式的左端,即可得到答案.

【解析】
当n=k时,等式左端=1+2+…+(3k+1),

当n=k+1时,等式左端=1+2+…+(3k+1)+(3k+2)+(3k+3)+(3k+4),

即当n=k+1时左端应在n=k的基础上加上(3k+1)+(3k+2)+(3k+3)+(3k+4).

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源:[同步]2014年新人教A版选修4-6 1.2最大公因数与最小公倍数 题型:填空题

1248和585的最大公约数是 .

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.2数学归纳法证明不等式举例(解析版) 题型:解答题

试比较nn+1与(n+1)n(n∈N*)的大小.

当n=1时,有nn+1 (n+1)n(填>、=或<);

当n=2时,有nn+1 (n+1)n(填>、=或<);

当n=3时,有nn+1 (n+1)n(填>、=或<);

当n=4时,有nn+1 (n+1)n(填>、=或<);

猜想一个一般性的结论,并加以证明.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.1数学归纳法练习卷(解析版) 题型:选择题

用数学归纳法证“1﹣++…+=++…+(n∈N*)”的过程中,当n=k到n=k+1时,左边所增加的项为( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.1数学归纳法练习卷(解析版) 题型:选择题

用数学归纳法证明:1+2+22+…2n﹣1=2n﹣1(n∈N)的过程中,第二步假设当n=k时等式成立,则当n=k+1时应得到( )

A.1+2+22+…+2k﹣2+2k+1﹣1

B.1+2+22+…+2k+2k+1=2k﹣1+2k+1

C.1+2+22+…+2k﹣1+2k+1=2k+1﹣1

D.1+2+22+…+2k﹣1+2k=2k﹣1+2k

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.3排序不等式练习卷(解析版) 题型:解答题

设正整数构成的数列{an}使得a10k﹣9+a10k﹣8+…+a10k≤19对一切k∈N*恒成立.记该数列若干连续项的和为S(i,j),其中i,j∈N*,且i<j.求证:所有S(i,j)构成的集合等于N*.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.3排序不等式练习卷(解析版) 题型:选择题

若a<b<c,x<y<z,则下列各式中值最大的一个是( )

A.ax+cy+bz B.bx+ay+cz

C.bx+cy+az D.ax+by+cz

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.1二维形式柯西不等式练习卷(解析版) 题型:填空题

(2014•陕西模拟)函数的最大值是 .

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.2综合法与分析法练习卷(解析版) 题型:选择题

下面叙述正确的是( )

A.综合法、分析法是直接证明的方法

B.综合法是直接证法、分析法是间接证法

C.综合法、分析法所用语气都是肯定的

D.综合法、分析法所用语气都是假定的

 

查看答案和解析>>

同步练习册答案