精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若函数的两个极值点为,求函数的解析式;

(2)在(1)的条件下,求函数的图象过点的切线方程;

(3)对一切恒成立,求实数的取值范围。

【答案】(1) (2)x+y-2=0 (3) a≥-2

【解析】函数的两个极值点处导数为0 ,g’(x)=3x2+2ax-1带入即可;

求函数的图象过点的切线方程,先求函数在点处的导数即斜率,在用点斜式求出方程;恒成立求实数的取值范围时,一般分离参数,2a≥2lnx-3x-再在最值处成立即可。

解:(1)g’(x)=3x2+2ax-1由题意:

(2)由(1)可得:g(x)=x3-x2-x+2(1o)若P为切点,则切线方程为:y=1

2 o若P不是切点,设切点Q(x0,y0)∴切线方程为y-y0=(3x02-2x0-1)(x-x0)

1-(x03-x02-x0+2)=(3x02-2x0-1)(1-x0) 2x0(x0-1)2=0 ∴x0=0 ∴切点(0,2)

∴切线方程:x+y-2=0

(3)2xlnx≤3x2+2ax-1+2 ∴2ax≥2xlnx-3x2-1 ∵x>0 ∴2a≥2lnx-3x-

令ln(x)=2lnx-3x-

x(0,1)1(1,+∞)

h’(x)+0-

h(x)极大值

∴h(x) ≤h(1)=-4 ∴2a≥-4 a≥-2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为短轴顶点在圆上.

(Ⅰ)求椭圆方程;

(Ⅱ)已知点,若斜率为1的直线与椭圆相交于两点,试探究以为底边的等腰三角形是否存在?若存在,求出直线的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图. 为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的星级卖场”.

(1)求在这10个卖场中,甲型号电视机的“星级卖场”的个数;

(2)若在这10个卖场中,乙型号电视机销售量的平均数为26.7,求a>b的概率;

(3)若a=1,记乙型号电视机销售量的方差为,根据茎叶图推断b为何值时,达到最值.

(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1) 若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围;

(2) 已知函数f(x)=x2+2mx+3m+4.

① 若函数f(x)有且仅有一个零点,求实数m的值;

若函数f(x)有两个零点且两个零点均比-1大,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心是坐标原点焦点在轴上离心率为又椭圆上任一点到两焦点的距离和为过右焦点轴不垂直的直线交椭圆于两点

1求椭圆的方程;

2在线段上是否存在点使得?若存在求出的取值范围;若不存在

说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆过点,离心率为,左、右焦点分别为,过的直线交椭圆于两点.

求椭圆C的方程;

的面积为时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】统计表明,某种型号的汽车在匀速行驶中每小时耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为: ,已知甲、乙两地相距100千米.

(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?

(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校90名专职教师的年龄状况如下表:

年龄

35岁以下

35~50岁

50岁以上

人数

45

30

15

现拟采用分层抽样的方法从这90名专职教师中抽取6名老、中、青教师下乡支教一年.

(Ⅰ)求从表中三个年龄段中分别抽取的人数;

(Ⅱ)若从抽取的6个教师中再随机抽取2名到相对更加边远的乡村支教,计算这两名教师至少有一个年龄是35~50岁教师的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:

X

1

2

3

4

5

频率

a

02

045

b

c

1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求abc的值;

2)在(1)的条件下,将等级系数为43件日用品记为,等级系数为52件日用品记为,现从5件日用品中任取两件(假定每件日用品被取出的可能性相同),求这两件日用品的等级系数恰好相等的概率.

查看答案和解析>>

同步练习册答案