【题目】已知函数
有两个极值点
.
(1)求实数
的取值范围;
(2)设
,若函数
的两个极值点恰为函数
的两个零点,当
时,求
的最小值.
【答案】(1)
(2)![]()
【解析】试题分析:(I)求出函数f(x)的导数,可得方程x2-ax+1=0有两个不相等的正根,即可求出a的范围;(II)对函数g(x)求导数,利用极值的定义得出g'(x)=0时存在两正根x1,x2;再利用判别式以及根与系数的关系,结合零点的定义,构造函数,利用导数即可求出函数y的最小值
解析:
(1)
的定义域为
,
,
令
,即
,要使
在
上有两个极值点,
则方程
有两个不相等正根,
则
解得
,
即
.
(2)
,
由于
为
的两个零点.
即
,
,
两式相减得:
.
∴
,
又
.
∴
.
故
,
设
,∵
为
的两根,
∴
,故
,
∴
,又
,
即
,
解得
或
.
因此
,
此时
,
,
即函数
在
单调递减,
∴当
时,
取得最小值,
∴
.
即所求最小值为
.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,以
为极点,
轴非负半轴为极轴建立坐标系,已知曲线
的极坐标方程为
,直线
的参数方程为:
(
为参数),两曲线相交于
两点.
(1)写出曲线
的直角坐标方程和直线
的普通方程;
(2)若
求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸末,甲申、乙酉、丙戌…癸巳,…,共得到
个组成,周而复始,循环记录。2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的()
A. 己亥年 B. 戊戌年 C. 庚子年 D. 辛丑年
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《孙子算经》中有如下问题:“今有三女,长女五日一归,中女四日一归,少女三日一归.问:三女何日相会?” 意思是:“一家出嫁的三个女儿中,大女儿每五天回一次娘家,二女儿每四天回一次娘家,小女儿每三天回一次娘家.三个女儿从娘家同一天走后,至少再隔多少天三人再次相会?”假如回娘家当天均回夫家,若当地风俗正月初二都要回娘家,则从正月初三算起的一百天内,有女儿回娘家的天数有
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
,定义
(
,且
为常数),若
,
,
.以下四个命题中为真命题的是__________.
①
不存在极值;②若
的反函数为
,且函数
与函数
有两个公共点,则
;③若
在
上是减函数,则实数
的取值范围是
;④若
,则在
的曲线上存在两点,使得过这两点的切线互相垂直.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:
月份 | 1 | 2 | 3 | 4 | 5 |
违章驾驶员人数 | 120 | 105 | 100 | 90 | 85 |
(1)请利用所给数据求违章人数
与月份之间的回归直线方程
;
(2)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下
列联表:能否据此判断有
的把握认为“礼让斑马线”行为与驾龄有关?
不礼让斑马线 | 礼让斑马线 | 合计 | |
驾龄不超过1年 | 22 | 8 | 30 |
驾龄1年以上 | 8 | 12 | 20 |
合计 | 30 | 20 | 50 |
参考公式及数据:
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(其中
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com