精英家教网 > 高中数学 > 题目详情
15.已知命题p:“直线l:x-y+a=0与圆C:(x+1)2+y2=2有公共点”,则a的取值范围是[-1,3].

分析 利用圆心与直线的距离等于小于圆的半径,然后求解a的范围.

解答 解:圆C:(x+1)2+y2=2的圆心(-1,0),半径为$\sqrt{2}$,
∵直线l:x-y+a=0与圆C:(x+1)2+y2=2有公共点,
∴$\frac{|-1+a|}{\sqrt{2}}$$≤\sqrt{2}$
∴|a-1|≤2,
解得实数a取值范围是[-1,3].
故答案为:[-1,3].

点评 本题考查直线与圆的位置关系,点到直线的距离公式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=($\frac{1}{4}$)x-($\frac{1}{2}$)x-1-a,(a∈R);
(1)若f(x)有零点,求实数a的取值范围
(2)当f(x)有零点时,讨论f(x)有零点的个数,并求出f(x)的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\frac{{\sqrt{x-2}}}{x-1}$,则函数f(x)的定义域为[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)计算:2lg4+lg$\frac{5}{8}+\sqrt{{{(\sqrt{3}-π)}^2}}$;
(2)已知${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}$=3,求${x^{\frac{3}{2}}}+{x^{-\frac{3}{2}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,椭圆的右顶点为A,点P在椭圆上,且PF1⊥x轴,直线AP交y轴于点Q,若$\overrightarrow{AQ}$=3$\overrightarrow{QP}$,则椭圆的离心率等于(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.a=log${\;}_{\frac{1}{3}}$5,b=log${\;}_{\frac{1}{2}}$$\frac{1}{5}$,c=($\frac{1}{2}$)0.5则(  )
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合M={x|x2-3x≤10},N={x|a-1≤x≤2a+1}.
(1)若a=2,求(∁RM)∪N;
(2)若M∪N=M,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为y=$\sqrt{3}$x,关于x的方程ax2+bx-$\sqrt{{a}^{2}-{b}^{2}}$=0的两根为m,n,则点P(m,n)(  )
A.在圆x2+y2=7内B.在圆x2+y2=7上
C.在椭圆$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{6}$=1内D.在椭圆$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{6}$=1上

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某厂有容量300吨的水塔一个,每天从早六点到晚十点供应生活和生产用水,已知:该厂生活用水每小时10吨,工业用水总量W(吨)与时间t(单位:小时,规定早晨六点时t=0)的函数关系为W=100$\sqrt{t}$,水塔的进水量有10级,第一级每小时水10吨,以后每提高一级,进水量增加10吨.若某天水塔原有水100吨,在供应同时打开进水管.问该天进水量应选择几级,既能保证该厂用水(即水塔中水不空),又不会使水溢出?

查看答案和解析>>

同步练习册答案