精英家教网 > 高中数学 > 题目详情
(2013•嘉兴二模)已知正实数a,b满足a+2b=1,则a2+4b2+
1
ab
的最小值为(  )
分析:由条件利用基本不等式可得 ab∈(0,
1
8
],再由 a2+4b2+
1
ab
=1-4ab+
1
ab
,且1-4ab+
1
ab
在(0,
1
8
]上是减函数,求得它的最小值.
解答:解:∵已知正实数a,b满足a+2b=1,∴1=a+2b≥2
2ab
,当且仅当a=2b时,取等号.解得ab≤
1
8
,即 ab∈(0,
1
8
].
再由 (a+2b)2=a2+4b2+4ab=1,故 a2+4b2+
1
ab
=1-4ab+
1
ab

把ab当做自变量,则1-4ab+
1
ab
在(0,
1
8
]上是减函数,故当ab=
1
8
时,1-4ab+
1
ab
取得最小值为 1-
1
2
+8=
17
2

故选D.
点评:本题主要考查基本不等式以及函数的单调性的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•嘉兴二模)已知点A(-3,0)和圆O:x2+y2=9,AB是圆O的直径,M和N是AB的三等分点,P(异于A,B)是圆O上的动点,PD⊥AB于D,
PE
ED
(λ>0)
,直线PA与BE交于C,则当λ=
1
8
1
8
时,|CM|+|CN|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉兴二模)如图,已知抛物线C1x2=2py的焦点在抛物线C2:y=
12
x2+1
上,点P是抛物线C1上的动点.
(Ⅰ)求抛物线C1的方程及其准线方程;
(Ⅱ)过点P作抛物线C2的两条切线,M、N分别为两个切点,设点P到直线MN的距离为d,求d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉兴二模)已知0<a<1,loga(1-x)<logax则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉兴二模)设集合A={1,2,3},B={1,3,9},x∈A,且x∉B,则x=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉兴二模)若log
1
2
(1-x)<log
1
2
x
,则(  )

查看答案和解析>>

同步练习册答案