精英家教网 > 高中数学 > 题目详情
13.已知函数g(x)=$\left\{\begin{array}{l}{{2e}^{x}-3,x>0}\\{f(x),x<0}\end{array}\right.$是奇函数,则x<0时,f(x)的解析式为(  )
A.f(x)=2ex-3B.f(x)=$\frac{2}{{e}^{x}}$-3C.f(x)=2ex+3D.f(x)=-$\frac{2}{{e}^{x}}$+3

分析 根据函数奇偶性的性质进行转化求解即可.

解答 解:若x<0,则-x>0,即g(-x)=2e-x-3,
∵g(x)是奇函数,
∴g(-x)=2e-x-3=-g(x),
则g(x)=3-2e-x,x<0,
∴当x<0时,f(x)=g(x)=3-2e-x
∴x<0时,f(x)=g(x)=3-2e-x=-$\frac{2}{{e}^{x}}$+3,
故选:D

点评 本题主要考查函数解析式的求解,根据函数奇偶性的性质进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,且|$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{7}$.
(1)求$\overrightarrow{a}•\overrightarrow{b}$及$\overrightarrow{b}$在$\overrightarrow{a}$方向上的射影;
(2)求2$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-2$\overrightarrow{b}$夹角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知{an}为等差数列,{bn}为正项等比数列,公式q≠1,若a1=b1,a11=b11,则(  )
A.a6>b6或a6<b6B.a6<b6C.a6>b6D.a6=b6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足a1=1,a2=2,an+2=2an+1-an+2.
(1)设bn=an+1-an,证明:{bn}是等差数列;
(2)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知(x-2)2-4(x-y)(y-2)=0,试求x+2与y的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足:a1=2t-2(t∈R且t≠±1),an+1=$\frac{2({t}^{n+1}-1){a}_{n}}{{a}_{n}+2{t}^{n}-2}$(n∈N*).
(1)求数列{an}的通项公式;
(2)若t>0,试比较an+1与an的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知在数列{an}中,a1=1,a2=2,an+2=an+2n,则a10=42.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若直线l经过直线l1:3x+y-7=0和直线l2:2x-3y-1=0的交点,且在x轴上的截距为5,则l的方程为x+3y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线方程为y=ax2+bx+c,集合M={-2,-1,0,1,2,3,4},a,b,c∈M,且a,b,c两两不相等.满足条件的抛物线中,过原点的抛物线有30条?

查看答案和解析>>

同步练习册答案