精英家教网 > 高中数学 > 题目详情
4.已知{an}为等差数列,{bn}为正项等比数列,公式q≠1,若a1=b1,a11=b11,则(  )
A.a6>b6或a6<b6B.a6<b6C.a6>b6D.a6=b6

分析 由等差数列的性质可得2a6=a1+a11,由等比数列的性质可得${{b}_{6}}^{2}$=b1•b11,根据条件和基本不等式即可得到答案.

解答 解:在等差数列{an}中,由等差数列的性质可得2a6=a1+a11
在等比数列{bn}中,由等比数列的性质可得${{b}_{6}}^{2}$=b1•b11
∵a1=b1>0,a11=b11>0,∴a1+a11≥2$\sqrt{{a}_{1}{a}_{11}}$=2$\sqrt{{b}_{1}{b}_{11}}$,
则2a6≥2b6,即a6≥b6,当且仅当b1=b11时取等号,
∵公式q≠1,∴b1≠b11,∴a6>b6
故选:C.

点评 本题考查等比数列、等差数列的性质,以及基本不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在正三棱柱A1B1C1-ABC中,AB=AA1=1,边AB上有一点P,锐二面角P-A1C1-B1与P-B1C1-A1的大小分别为α、β,则tan(α+β)的最小值为-$\frac{8\sqrt{3}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知3x=5y,且$\frac{1}{x}$+$\frac{1}{y}$=3,则x+y=$\frac{1}{3}$(2+log35+log53).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设α,β是两个不同的平面,l是一条直线,以下命题不正确的是(  )
①若l⊥α,α⊥β,则l?β         ②若l∥α,α∥β,则l?β
③若l⊥α,α∥β,则l⊥β         ④若l∥α,α⊥β,则l⊥β
A.①③B.②③④C.①②④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知命题p:($\frac{1}{3}$)${\;}^{a-{a}^{2}}$<9,q:|2a-1|<4,若命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设a,b∈R,且a≠-2,若奇函数f(x)=lg$\frac{1+ax}{1-2x}$在区间(-b,b)上有定义.
(1)求a的值;
(2)求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知偶函数g(x)=2x2+3x+1(x≤0),求x>0的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数g(x)=$\left\{\begin{array}{l}{{2e}^{x}-3,x>0}\\{f(x),x<0}\end{array}\right.$是奇函数,则x<0时,f(x)的解析式为(  )
A.f(x)=2ex-3B.f(x)=$\frac{2}{{e}^{x}}$-3C.f(x)=2ex+3D.f(x)=-$\frac{2}{{e}^{x}}$+3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an},公差大于零,a2,a5是方程x2-12x+27=0的两根,令数列{bn}的前n项和为Sn,且Sn=1-$\frac{1}{2}$bn(n∈N+
(1)分别求{an},{bn}的通项公式;
(2)记cn=an•bn(n∈N+),试比较cn+1与cn的大小.

查看答案和解析>>

同步练习册答案