【题目】若的部分图象如图所示.
(1)求函数的解析式;
(2)将的图象向左平移个单位长度得到的图象,若图象的一个对称轴为,求的最小值;
(3)在第(2)问的前提下,求函数在上的单调区间.
科目:高中数学 来源: 题型:
【题目】设区间D=[﹣3,3],定义在D上的函数f(x)=ax3+bx+1(a>0,b∈R),集合A={a|x∈D,f(x)≥0}.
(1)若b= ,求集合A;
(2)设常数b<0 ①讨论f(x)的单调性;
②若b<﹣1,求证:A=.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的奇函数f(x),当x≥0时,f(x)= ,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为( )
A.3a﹣1
B.1﹣3a
C.3﹣a﹣1
D.1﹣3﹣a
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】x,y 满足约束条件 ,若 z=y﹣ax 取得最大值的最优解不唯一,则实数 a 的值为( )
A. 或﹣1
B.2 或
C.2 或1
D.2 或﹣1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数上的一个最高点的坐标为,由此点到相邻最低点间的曲线与x轴交于点,若.
(1)求的解析式.
(2)求在上的值域.
(3)若对任意实数,不等式在上恒成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com