分析 (1)a1+S1=a1+a1=2,求得a1=1,an+1+Sn+1=2,an+Sn=2,两式相减得:2an+1=an,根据等数列通项公式求得an=($\frac{1}{2}$)n-1;
(2)由bn=n•an=$n•{(\frac{1}{2})^{n-1}}$,利用“错位相减法”即可求得数列{bn}前n项和Sn.
解答 解:(1)∵n=1时,a1+S1=a1+a1=2,
∴a1=1.…(2分)
∵Sn=2-an,即an+Sn=2,
∴an+1+Sn+1=2.
两式相减:an+1-an+Sn+1-Sn=0,即an+1-an+an+1=0,
故有2an+1=an,
∵an≠0,
∴$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{1}{2}$(n∈N+),
∴an=($\frac{1}{2}$)n-1.…(6分)
(2)∵bn=n•an=$n•{(\frac{1}{2})^{n-1}}$,
∴${S_n}=1•{(\frac{1}{2})^0}+2•{(\frac{1}{2})^1}+3•{(\frac{1}{2})^2}+…+n•{(\frac{1}{2})^{n-1}}$
而$\frac{1}{2}$Sn=1•$\frac{1}{2}$+2•($\frac{1}{2}$)2+3•($\frac{1}{2}$)3+…+n•($\frac{1}{2}$)n,②…(8分)
①-②得$\frac{1}{2}$Sn=1+($\frac{1}{2}$)1+($\frac{1}{2}$)2+($\frac{1}{2}$)3+…+($\frac{1}{2}$)n-1-n•($\frac{1}{2}$)n,
=$\frac{1•(1-(\frac{1}{2})^{2})}{1-\frac{1}{2}}$-n•($\frac{1}{2}$)n,
=2-(2+n)($\frac{1}{2}$)n,
∴Sn=4-(2+n)($\frac{1}{2}$)n-1.…(12分)
点评 本题考查等比数列通项公式,考查等比数列性质,考查“错位相减法”求数列的前n项和,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | 4$\sqrt{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 转速x(转/秒) | 2 | 4 | 5 | 6 | 8 |
| 每小时生产有缺点的零件数y(件) | 30 | 40 | 60 | 50 | 70 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com