精英家教网 > 高中数学 > 题目详情
17.若函数f(x)=cos2x-cos(2x+$\frac{π}{3}$)的图形向左平移φ(φ>0)个单位后关于y轴对称,则φ的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

分析 根据“左加右减”原则表示出变换后的函数解析式,再由两角差的正弦公式进行整理,利用正弦函数图象的对称性和诱导公式,列出关于φ的式子,再求出φ的最小值.

解答 解:数f(x)=cos2x-cos(2x+$\frac{π}{3}$)
=cos2x-cos2xcos$\frac{π}{3}$+sin2xsin$\frac{π}{3}$
=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x
=sin(2x+$\frac{π}{6}$)
将该函数向左平移φ(φ>0)个单位后所得的函数为y=sin(2x+$\frac{π}{6}$+2φ).
∵所得图象关于y轴对称,
∴$\frac{π}{6}$+2φ=kπ+$\frac{π}{2}$,
解得φ=$\frac{1}{2}$kπ+$\frac{π}{6}$.
当k=0时,φ取最小值,其最小值是$\frac{π}{6}$.
故选:A.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换法原则:“左加右减,上加下减”,以及两角差的正弦公式和三角函数图象的性质应用,注意左右平移时必须在x的基础进行加减,这是易错的地方.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若一个圆锥侧面展开图是面积为2π的半圆面,则该圆锥底面的面积为(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数z=$\sqrt{3}$+i对应的点在复平面(  )
A.第四象限内B.实轴上C.虚轴上D.第一象限内

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.有6名男医生,从中选出2名男医生组成一个医疗小组,则不同的选法共有(  )
A.60种B.15种C.30种D.48种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设数列{an}的前n项和为Sn,且满足Sn=2-an,n=1,2,3,….
(1)求数列{an}的通项公式;
(2)令bn=n•an,求数列{bn}前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知△ABC三个顶点的坐标分别为A(-1,0),B(0,2),C(2,0),D 为BC的中点,则$\overrightarrow{AD}$=(2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示的程序框图,若输入的a、k分别89、2,则输出的数为(  )
A.1011001(2)B.1101001(2)C.1110010(2)D.1011010(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{x^2}{4}$+y2=1上的一个点P(x,y),求u=2x+y的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.过直线y=2x上的一点P作⊙M:(x-2)2+(y-1)2=1的两条切线l1,l2,A,B两点为切点.若直线l1,l2关于直线y=2x对称,则四边形PAMB的面积为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

同步练习册答案