精英家教网 > 高中数学 > 题目详情
1.一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
 转速x(转/秒) 2 4 5 6 8
 每小时生产有缺点的零件数y(件) 30 40 60 50 70
(1)如果y对x有线性相关关系,求回归直线方程;
(2)若实际生产中,允许每小时的产品中有缺点的零件最多为89个,那么机器的运转速度应控制在什么范围内?
附:最小二乘法估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$
参考数值:$\sum_{i}^{5}{x}_{i}{y}_{i}$=1380,$\sum_{i}^{5}{{x}_{i}}^{2}$=145.

分析 (1)先求出横标和纵标的平均数,代入求系数b的公式,利用最小二乘法得到系数,再根据公式求出a的值,写出线性回归方程,得到结果.
(2)允许每小时的产品中有缺点的零件最多为89个,即线性回归方程的预报值不大于89,写出不等式,解关于x的一次不等式,得到要求的机器允许的转数.

解答 解:(1)$\overline{x}$=5,$\overline{y}$=50,$\sum_{i}^{5}{x}_{i}{y}_{i}$=1380,$\sum_{i}^{5}{{x}_{i}}^{2}$=145
∴$\stackrel{∧}{b}$=$\frac{1380-5×5×50}{145-5×5×5}$=6.5,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$=17.5
∴回归直线方程为:$\stackrel{∧}{y}$=6.5x+17.5;
(3)由y≤89得6.5x+17.5≤89,解得x≤11
∴机器的运转速度应控制范围为(0,11].

点评 本题考查线性回归分析,考查线性回归方程,考查线性回归方程的应用,考查不等式的解法,是一个综合题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.曲线y=1+$\sqrt{4-{x}^{2}}$与直线y=k(x-2)+4有两个交点时,实数的取值范围是(  )
A.$\frac{5}{12}$<k<$\frac{3}{4}$B.$\frac{5}{12}$<k≤$\frac{3}{4}$C.$\frac{1}{3}$<k<$\frac{3}{4}$D.0<k<$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设数列{an}的前n项和为Sn,且满足Sn=2-an,n=1,2,3,….
(1)求数列{an}的通项公式;
(2)令bn=n•an,求数列{bn}前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示的程序框图,若输入的a、k分别89、2,则输出的数为(  )
A.1011001(2)B.1101001(2)C.1110010(2)D.1011010(2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=sinx在其定义域上的奇偶性是(  )
A.奇函数B.偶函数C.既奇且偶的函数D.非奇非偶的函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{x^2}{4}$+y2=1上的一个点P(x,y),求u=2x+y的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.以正方体的顶点为顶点的四面体个数有58.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.△ABC的内角A,B,C所对的边分别为a,b,c.向量$\overrightarrow{m}$=(a,$\sqrt{3}$b)与$\overrightarrow{n}$=(cosA,sinB)平行.
(I)求A;
(II)若a=$\sqrt{7}$,△ABC的面积为$\frac{3\sqrt{3}}{2}$,求该三角形的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x+$\frac{a^2}{x}$,g(x)=x+lnx,其中a≥1.
(1)若x=2是函数f(x)的极值点,求h(x)=f(x)+g(x)在(1,h(1))处的切线方程;
(2)若对任意的x1,x2∈[1,e](e为自然对数的底数)都有f(x1)≥g(x2)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案