| A. | $\frac{5}{12}$<k<$\frac{3}{4}$ | B. | $\frac{5}{12}$<k≤$\frac{3}{4}$ | C. | $\frac{1}{3}$<k<$\frac{3}{4}$ | D. | 0<k<$\frac{5}{12}$ |
分析 根据直线过定点,以及直线和圆的位置关系即可得到结论.利用数形结合作出图象进行研究即可.
解答 解:由y=k(x-2)+4知直线l过定点(2,4),将y=1+$\sqrt{4-{x}^{2}}$两边平方得x2+(y-1)2=4,
则曲线是以(0,1)为圆心,2为半径,且位于直线y=1上方的半圆.
当直线l过点(-2,1)时,直线l与曲线有两个不同的交点,![]()
此时1=-2k+4-2k,
解得k=$\frac{3}{4}$,
当直线l与曲线相切时,直线和圆有一个交点,
圆心(0,1)到直线kx-y+4-2k=0的距离d=$\frac{|3-2k|}{\sqrt{1+{k}^{2}}}$=2,
解得k=$\frac{5}{12}$,
要使直线l:y=kx+4-2k与曲线y=1+$\sqrt{4-{x}^{2}}$有两个交点时,
则直线l夹在两条直线之间,
因此$\frac{5}{12}$<k≤$\frac{3}{4}$,
故选:B.
点评 本题主要考查直线和圆的位置关系的应用,利用数形结合是解决本题的关键,考查学生的计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{2}$ | B. | $\frac{99}{28}$ | C. | $\frac{71}{20}$ | D. | $\frac{51}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{{3\sqrt{3}}}{2}$,$\frac{3}{2}$) | B. | ($\frac{{\sqrt{3}}}{2}$,$\frac{3}{2}$) | C. | ($\frac{3}{2}$,$\frac{{3\sqrt{3}}}{2}$) | D. | 以上都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | 4$\sqrt{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 转速x(转/秒) | 2 | 4 | 5 | 6 | 8 |
| 每小时生产有缺点的零件数y(件) | 30 | 40 | 60 | 50 | 70 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com