精英家教网 > 高中数学 > 题目详情
10.△ABC的内角A,B,C所对的边分别为a,b,c.向量$\overrightarrow{m}$=(a,$\sqrt{3}$b)与$\overrightarrow{n}$=(cosA,sinB)平行.
(I)求A;
(II)若a=$\sqrt{7}$,△ABC的面积为$\frac{3\sqrt{3}}{2}$,求该三角形的周长.

分析 (I)由$\overrightarrow{m}$∥$\overrightarrow{n}$,可得asinB-$\sqrt{3}$bcosA=0,再利用正弦定理即可得出..
(II)S=$\frac{1}{2}bcsin\frac{π}{3}$=$\frac{3\sqrt{3}}{2}$,化为:bc=6.由余弦定理可得:$(\sqrt{7})^{2}$=b2+c2-2bccos$\frac{π}{3}$,化简可得b+c.

解答 解:(I)∵$\overrightarrow{m}$∥$\overrightarrow{n}$,∴asinB-$\sqrt{3}$bcosA=0,
由正弦定理可得:sinAsinB-$\sqrt{3}$sinBcosA=0,sinB≠0,可得tanA=$\sqrt{3}$,
A∈(0,π),∴A=$\frac{π}{3}$.
(II)S=$\frac{1}{2}bcsin\frac{π}{3}$=$\frac{3\sqrt{3}}{2}$,化为:bc=6.
由余弦定理可得:$(\sqrt{7})^{2}$=b2+c2-2bccos$\frac{π}{3}$,解得b2+c2-bc=7,∴(b+c)2-3bc=7,可得b+c=5.
∴三角形的周长=5+$\sqrt{7}$.

点评 本题考查了正弦定理余弦定理、向量共线定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.若复数z=$\frac{2}{(1-i)^{2}}$+$\frac{3+i}{1-i}$的虚部为m,函数f(x)=x+$\frac{4}{x-1}$,x∈[2,3]的最小值为n.
(1)求m,n;
(2)求由曲线y=x,直线x=m,x=n以及x轴所围成平面图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
 转速x(转/秒) 2 4 5 6 8
 每小时生产有缺点的零件数y(件) 30 40 60 50 70
(1)如果y对x有线性相关关系,求回归直线方程;
(2)若实际生产中,允许每小时的产品中有缺点的零件最多为89个,那么机器的运转速度应控制在什么范围内?
附:最小二乘法估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$
参考数值:$\sum_{i}^{5}{x}_{i}{y}_{i}$=1380,$\sum_{i}^{5}{{x}_{i}}^{2}$=145.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.集合A={-1,0,1}的子集个数是(  )
A.5B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.(x+a)(1+x)4的展开式中x2的系数为16,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.分别求下列函数的最值:
(1)y=2x2-12x+21;
(2)y=(1-x)(x+2);
(3)y=3-$\sqrt{5x-3{x}^{2}-2}$;
(4)y=$\frac{1}{1-x(1-x)}$;
(5)y=x4-3x2+2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数y=f(x)的图象经过点(2,0),那么函数f(x-3)+1的图象一定过点(5,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,矩形ABCD和直角三角形ABP有共同的边AB,且PA=AD=3,DC=4,沿BD把平面DBP折起,使AC=$\sqrt{7}$.
(1)求证:PD⊥BC;
(2)求PC与平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=lnx-ax2(a∈R).
(1)若函数f(x)有极大值为-$\frac{1}{2}$,求实数a的值;
(2)在(1)的条件下,若有f(m)=f(n),m<n,证明:m+n>4a.

查看答案和解析>>

同步练习册答案