精英家教网 > 高中数学 > 题目详情

【题目】某高新技术公司要生产一批新研发的款手机和款手机,生产一台款手机需要甲材料,乙材料,并且需要花费1天时间,生产一台款手机需要甲材料,乙材料,也需要1天时间,已知生产一台款手机利润是1000元,生产一台款手机的利润是2000元,公司目前有甲、乙材料各,则在不超过120天的情况下,公司生产两款手机的最大利润是__________元.

【答案】210000

【解析】设生产款手机和款手机件,利润之和为元,则根据题意可得,目标函数为

目标函数表示直线的纵轴截距的2000倍,由图可知,当直线经过点点时, 取得最大值。联立方程,解得.所以当,时,目标函数取得最大值, .

点晴:本题考查的是线性规划问题,线性规划问题的实质是把代数问题几何化,即数形结合的思想,需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最值会在可行域的端点或边界上取得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.
(Ⅰ)求圆的方程;
(Ⅱ)设直线ax﹣y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(﹣2,4),若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不用计算器求下列各式的值
(1)lg52+ lg8+lg5lg20+(lg2)2
(2)设2a=5b=m,且 + =2,求m.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2lnx﹣x2 , 若方程f(x)+m=0在 内有两个不等的实根,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,在区间(0,2)上为增函数的是(
A.y=3﹣x
B.y=x2+1
C.y=
D.y=﹣x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产两种产品,且产品的质量用质量指标来衡量,质量指标越大表明产品质量越好.现按质量指标划分:质量指标大于或等于82为一等品,质量指标小于82为二等品.现随机抽取这两种产品各100件进行检测,检测结果统计如表:

测试指标

产品

8

12

40

32

8

产品

7

18

40

29

6

(Ⅰ)请估计产品的一等奖;

(Ⅱ)已知每件产品的利润(单位:元)与质量指标值的关系式为:

已知每件产品的利润(单位:元)与质量指标值的关系式为:

(i)分别估计生产一件产品,一件产品的利润大于0的概率;

(ii)请问生产产品, 产品各100件,哪一种产品的平均利润比较高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD=
(Ⅰ)求证:AE∥平面DCF;
(Ⅱ)当AB的长为何值时,二面角A﹣EF﹣C的大小为60°?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,设
(Ⅰ)求B 的值
(Ⅱ)求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图直三棱柱 分别为的中点。

求证:(1)平面

(2)∥平面

查看答案和解析>>

同步练习册答案