精英家教网 > 高中数学 > 题目详情
2.在四棱锥A-BCDE中,底面BCDE为菱形,侧面ABE为等边三角形,且侧面ABE⊥底面BCDE,O,F分别为BE,DE的中点.
(Ⅰ)求证:AO⊥CD;
(Ⅱ)求证:平面AOF⊥平面ACE;
(Ⅲ)侧棱AC上是否存在点P,使得BP∥平面AOF?若存在,求出$\frac{AP}{PC}$的值;若不存在,请说明理由.

分析 (I)由等边三角形知识得AO⊥BE,利用面面垂直的性质得出AO⊥平面BCDE,故而AO⊥CD;
(II)连结BD,由菱形性质得出CE⊥BD,又AO⊥平面BCDE,故AO⊥CE,由中位线性质得BD∥EF,故而CE⊥平面AOF,所以平面AOF⊥平面ACE;
(III)设CE 与BD,OF 的交点分别为M,N,连结AN,PM.则当平面BPM∥平面AOF时,BP∥平面AOF,故只需$\frac{AP}{PC}=\frac{NM}{MC}$即可.

解答 证明:(Ⅰ)因为△ABE 为等边三角形,O 为BE 的中点,
所以AO⊥BE.又因为平面ABE⊥平面BCDE,平面ABE∩平面BCDE=BE,AO?平面ABE,
所以AO⊥平面BCDE.又因为CD?平面BCDE,
所以AO⊥CD.
(Ⅱ)连结BD,因为四边形BCDE 为菱形,
所以CE⊥BD.
因为O,F 分别为BE,DE 的中点,
所以OF∥BD,所以CE⊥OF.
由(Ⅰ)可知,AO⊥平面BCDE.
因为CE?平面BCDE,所以AO⊥CE.
因为AO∩OF=O,所以CE⊥平面AOF.
又因为CE?平面ACE,
所以平面AOF⊥平面ACE.
(Ⅲ)当点P 为AC 上的三等分点(靠近A 点)时,BP∥平面AOF.
证明如下:
设CE 与BD,OF 的交点分别为M,N,连结AN,PM.
因为四边形BCDE 为菱形,O,F 分别为BE,DE 的中点,
所以$\frac{NM}{MC}=\frac{1}{2}$.
设P为AC上靠近A点的三等分点,
则$\frac{AP}{PC}=\frac{NM}{MC}=\frac{1}{2}$,所以PM∥AN.
因为AN?平面AOF,PM?平面AOF,所以PM∥平面AOF.
由于BD∥OF,OF?平面AOF,BD?平面AOF,
所以BD∥平面AOF,即BM∥平面AOF.
因为BM∩PM=M,
所以平面BMP∥平面AOF.
因为BP?平面BMP,所以BP∥平面AOF.
∴侧棱AC 上存在点P,使得BP∥平面AOF,且$\frac{AP}{PC}=\frac{1}{2}$.

点评 本题考查了线面垂直,面面垂直的判定,线面平行的判定,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.如图,某几何体的主视图与左视图都是边长为1的正方形,且其体积为$\frac{π}{4}$.则该几何体的俯视图可以是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=aex+b,g(x)=x2+cx+d,若曲线y=f(x)和曲线y=g(x)都过点P(0,$\frac{1}{e}$),且在点P处有相同的切线y=$\frac{1}{e}$x+$\frac{1}{e}$.
(1)求a,b,c,d的值;
(2)若函数h(x)=f(-|x|+1)-g(x+t)(t>0)存在零点,求证:0<t≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={0,1,2},B={x|x2=1},则A∩B等于(  )
A.{-1,1}B.{0,1}C.{1}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={0,1,2},B={x|x(x-2)<0},则A∩B(  )
A.{0,1,2}B.{1,2}C.{0,1}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|x(1-x)>0},B={0,1,2},则A∩B=(  )
A.B.{0,1}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.产品生产件数x与成本y(万元)之间有函数关系y=300+20x-0.1x2,若每件产品成本均不超过7万元,则产品产量至少应为150件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如果实数x,y满足条件$\left\{\begin{array}{l}{2x+y-2≥0}\\{x-y+2≥0}\\{x-a≤0}\end{array}\right.$,若z=$\frac{y-1}{x+1}$的最小值小于$\frac{1}{2}$,则实数a的取值范围是(  )
A.(-∞,1)B.(1,+∞)C.($\frac{1}{5}$,1)D.($\frac{1}{5}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,角A,B,C的对边分别是a,b,c,已知b=2,且cos2B+cosB+cos(A-C)=1,则a+2c的最小值时,最大边所对角的余弦值是-$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

同步练习册答案