精英家教网 > 高中数学 > 题目详情
14.已知 函数f(x)=sin(x+$\frac{π}{2}$)+cos(x-$\frac{π}{2}$)+m的最大值为2$\sqrt{2}$,则实数m的值为(  )
A.2$\sqrt{2}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.2

分析 利用诱导公式、两角和的正弦公式化简函数的解析式,再利用正弦函数的最值求得m的值.

解答 解:∵函数f(x)=sin(x+$\frac{π}{2}$)+cos(x-$\frac{π}{2}$)+m=cosx+sinx+m=$\sqrt{2}$sin(x+$\frac{π}{4}$)+m
的最大值为$\sqrt{2}$+m=2$\sqrt{2}$,则实数m=$\sqrt{2}$,
故选:B.

点评 本题主要考查诱导公式、两角和的正弦公式,正弦函数的最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数f(x)=($\frac{1}{3}$)x+$\frac{1}{\sqrt{x+3}}$-3的零点所在区间是(  )
A.(1,2)B.(0,1)C.(-1,0)D.(-2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{2}$,左顶点为A(-2,0),过点A作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴于点E.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点P为AD的中点,是否存在顶点Q,对于任意的k(k≠0)都有OP⊥EQ?若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在长方体ABCD-A1B1C1D1中,E,F分别是AB,CD1的中点,AA1=AD=1,AB=2.
(1)求证:EF∥平面BCC1B1
(2)求证:平面CD1E⊥平面D1DE;
(3)在线段CD1上是否存在一点Q,使得二面角Q-DE-D1为45°,若存在,求$\frac{{|{{D_1}Q}|}}{{|{{D_1}C}|}}$的值,不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.把216°化为弧度是(  )
A.$\frac{6π}{5}$B.$\frac{5π}{6}$C.$\frac{7π}{6}$D.$\frac{12π}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知sinα=$\frac{3}{5}$,α∈($\frac{π}{2}$,π).
(Ⅰ)求cosα,tanα;
(Ⅱ)sin(α+$\frac{π}{3}$);
(Ⅲ)cos2α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知幂函数y=f(x)的图象过点($\sqrt{2}$,2$\sqrt{2}$),且f(m-2)>1,则m的取值范围是(  )
A.m<1或m>3B.1<m<3C.m<3D.m>3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点为A,左焦点为F,过F作垂直于x轴的直线与双曲线相交于B、C两点,若△ABC为直角三角形,则双曲线的离心率为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.有以下两个推理过程:
(1)在等差数列{an}中,若a10=0,则有等式a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)成立.相应地,在等比数列{bn}中,若b10=1,则有等式b1b2…bn=b1b2…b19-n(n<19,n∈N*);
(2)由1=12,1+3=22,1+3+5=32,1+3+5+…+(2n-1)=n2
则(1)(2)两个推理过程分别属于(  )
A.归纳推理、演绎推理B.类比推理、演绎推理
C.归纳推理、类比推理D.类比推理、归纳推理

查看答案和解析>>

同步练习册答案