精英家教网 > 高中数学 > 题目详情
19.已知sinα=$\frac{3}{5}$,α∈($\frac{π}{2}$,π).
(Ⅰ)求cosα,tanα;
(Ⅱ)sin(α+$\frac{π}{3}$);
(Ⅲ)cos2α.

分析 (Ⅰ)根据角度范围,利用平方关系,求出cosα,然后利用商数关系求出tanα;
(Ⅱ)利用两角和与差的三角函数公式展开,分别代入三角函数值解答即可;
(Ⅲ)利用余弦的二倍角公式解答即可.

解答 解:(Ⅰ)因为$sinα=\frac{3}{5}$,$α∈(\frac{π}{2},{π)}$
所以$cosα=-\sqrt{1-{{sin}^2}α}=-\frac{4}{5}$,-----------------------(2分)
$tanα=\frac{sinα}{cosα}=-\frac{3}{4}$;----------------------(4分)
(Ⅱ)$sin(α+\frac{π}{3})=sinαcos\frac{π}{3}+cosαsin\frac{π}{3}$------------------(6分)
=$\frac{3}{5}×\frac{1}{2}+(-\frac{4}{5})×\frac{{\sqrt{3}}}{2}=\frac{{3-4\sqrt{3}}}{10}$------------------------------------(8分)
(Ⅲ)$cos2α=1-2{sin^2}α=1-2×\frac{9}{25}=\frac{7}{25}$.---------------(12分)

点评 本题考查了三角函数值的求法;用到了三角函数的平方关系,两角和与差的三角函数公式以及倍角公式;注意角度范围对三角函数值的影响;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若圆C1:(x-1)2+(y+3)2=1与圆C2:(x-a)2+(y-b)2=1外离,过直线l:x-y-1=0上任意一点P分别做圆C1,C2的切线,切点分别为M,N,且均保持|PM|=|PN|,则a+b=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an},其前n项和为Sn,给出下列命题:
①若{an}是等差数列,则$({10,\frac{{{S_{10}}}}{10}}),({100,\frac{{{S_{100}}}}{100}}),({110,\frac{{{S_{110}}}}{110}})$三点共线;
②若{an}是等差数列,则${S_m},{S_{2m}}-{S_m},{S_{3m}}-{S_{2m}}({m∈{N^*}})$;
③若${a_1}=1,{S_{n+1}}=\frac{1}{2}{S_n}+2$,则数列{an}是等比数列;
④若${a_{n+1}}^2={a_n}{a_{n+2}}$,则数列{an}是等比数列.
其中证明题的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a∈R,函数f(x)=lnx-ax+1.
(1)讨论函数f(x)的单调性;
(2)若函数f(x)有两个不同的零点x1,x2(x1<x2),求实数a的取值范围;
(3)在(2)的条件下,求证:x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知 函数f(x)=sin(x+$\frac{π}{2}$)+cos(x-$\frac{π}{2}$)+m的最大值为2$\sqrt{2}$,则实数m的值为(  )
A.2$\sqrt{2}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知三个数a=0.32,b=log20.3,c=20.3,则a,b,c之间的大小关系是(  )
A.b<a<cB.a<b<cC.a<c<bD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线l1:kx-y+4=0与直线l2:x+ky-3=0(k≠0)分别过定点A、B,又l1、l2相交于点M,则|MA|•|MB|的最大值为$\frac{25}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(m,1),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{4}$.
(1)求|$\overrightarrow{a}$-2$\overrightarrow{b}$|;
(2)若($\overrightarrow{a}$+λ$\overrightarrow{b}$)与$\overrightarrow{b}$垂直,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知圆M:(x-a)2+y2=4(a>0)与圆N:x2+(y-1)2=1外切,则直线x-y-$\sqrt{2}$=0被圆M截得线段的长度为(  )
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

同步练习册答案