精英家教网 > 高中数学 > 题目详情
(2012•房山区一模)设f(x)是定义在R上不为零的函数,对任意x,y∈R,都有f(x)•f(y)=f(x+y),若a1=
1
2
an=f(n)(n∈N*)
,则数列{an}的前n项和的取值范围是
[
1
2
,1)
[
1
2
,1)
分析:依题意分别求出f(2),f(3),f(4)进而发现数列{an}是以
1
2
为首项,以
1
2
为公比的等比数列,进而可求得Sn的取值范围.
解答:解:由题意可得,f(2)=f2(1),f(3)=f(1)f(2)=f3(1),
f(4)=f(1)f(3)=f4(1),a1=f(1)=
1
2

∴f(n)=(
1
2
)
n

Sn=
1
2
(1-
1
2n
)
1-
1
2
=1-
1
2n
∈[
1
2
,1).
故答案:[
1
2
,1)
点评:本题主要考查了等比数列的求和问题,解题的关键是根据已知条件确定出等比数列的首项及公比
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•房山区一模)已知△ABC中,内角A,B,C的对边分别为a,b,c,且cosA=
2
5
5
cosB=
3
10
10

(Ⅰ)求cos(A+B)的值;
(Ⅱ)设a=
10
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区一模)如果在一周内安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余两所学校均只参观一天,那么不同的安排方法共有
120
120
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区一模)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区一模)一个几何体的三视图如图所示,则这个几何体的体积为
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区一模)已知椭圆G的中心在坐标原点,焦点在x轴上,一个顶点为A(0,-1),离心率为
6
3

(I)求椭圆G的方程;
(II)设直线y=kx+m与椭圆相交于不同的两点M,N.当|AM|=|AN|时,求m的取值范围.

查看答案和解析>>

同步练习册答案