精英家教网 > 高中数学 > 题目详情
15.已知等差数列5,$\frac{30}{7}$.$\frac{25}{7}$,…的前n项和为Sn,那么n=7或8时Sn取得最大值.

分析 由已知求出等差数列的公差,得到等差数列的通项公式,由an≥0求得使Sn取得最大值的n值.

解答 解:∵公差d=$\frac{30}{7}$-5=$-\frac{5}{7}$,
∴an=5-$\frac{5}{7}$(n-1)=$\frac{40}{7}-\frac{5n}{7}$,
由an≥0,得:n≤8.
∴当n=7或8时,Sn取得最大值.
故答案为:7或8.

点评 本题考查等差数列的通项公式,考查了等差数列的前n项和,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.不等式$\frac{2x-1}{1+3x}$≤1的解集为M,函数f(x)=lg$\frac{4+x}{4-x}$的定义域为N,则M∩N=(-$\frac{1}{3}$,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.给出如下表示:①{1}∈{0,1,2};②{1,-3}={-3,1};③{0,1,2}?{1,0,2};④∅∈{0},其中错误表示的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{a{x}^{2}+1}{x+b}$是奇函数,且方程f(x)=1有等根.
(1)求a,b的值;
(2)判断函数y=f(f(x))的奇偶性,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知在△ABC中,内角A、B、C的对边分别为a、b、c,已知a2-c2=2b,且sinB=4cosAsinC,则b的值为(  )
A.4B.8C.6D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.三个数30,log31,log${\;}_{\frac{1}{3}}$3的大小关系是(  )
A.30>log31>log${\;}_{\frac{1}{3}}$3B.30>log${\;}_{\frac{1}{3}}$3>log31
C.log31>30>log${\;}_{\frac{1}{3}}$3D.log${\;}_{\frac{1}{3}}$3>log31>30

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=${x}^{-\frac{2}{3}}$定义域是{x|x≠0},值域是{y|y>0};奇偶性:偶函数,单调区间(-∞,0),(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.化简:$\frac{1+i}{1-i}$+$\frac{1-i}{1+i}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知奇函数f(x)=$\frac{m-g(x)}{1+g(x)}$的定义域为R,其中g(x)为指数函数且过点(2,9).
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)判断函数f(x)的单调性,并用函数单调性定义证明.

查看答案和解析>>

同步练习册答案