精英家教网 > 高中数学 > 题目详情
如图,正方形ACDE与等腰直角△ACB所在的平面互相垂直,且AC=BC=2,∠ACB=90°,F、G分别是线段AE、BC的中点.求AD与GF所成的角的余弦值.
考点:异面直线及其所成的角
专题:空间角,空间向量及应用
分析:根据题意,建立空间直角坐标系,可得向量
AD
=(0,-2,2),
GF
=(-1,2,1),利用空间向量的夹角公式加以计算,即可得到异面直线AD与FG所成的角的余弦值.
解答: 解,分别以CB、CA、CD所在直线为x轴、y轴、z轴,建立空间直角坐标系,…2分
可得A(0,2,0),D(0,0,2),G(1,0,0),F(0,2,1)…4分
AD
=(0,-2,2),
GF
=(-1,2,1)…6分
|
AD
|=2
2
…8分
|
GF
|=
6
…10分
AD
GF
=-2,COS
AD
GF
=
AD
GF
|
AD
||
GF
|
=-
3
6
…12分
点评:本题给出正方形所在平面与直角三角形所在平面互相垂直,求面直线AD与FG所成的角的余弦值.着重考查了面面垂直的性质和利用空间向量研究异面直线所成角大小等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+
a+1
2
x2+1,
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)当-1<a<0时,不等式f(x)>1+
a
2
ln(-a)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-1≤x≤a,a>1且a∈R},B={y|y=2x-1,x∈A},C={z|z=x2,x∈A},是否存在a的值,使C⊆B?若存在,求出a的取值范围.若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在侧棱与底面垂直的四棱柱ABCD-A1B1C1D1中,AB∥CD,AB⊥BC,且A1A=AB=BC=1,CD=2.
(1)求证:AB1⊥平面A1BC;
(2)在线段CD上是否存在点N,使得D1N∥平面A1BC?若存在,求出此时三棱锥N-AA1C的体积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y,z∈R,且x+2y+3z+8=0.求证:(x-1)2+(y+2)2+(z-3)2≥14.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是边长为2
2
的正方形,其他四个侧面是侧棱长为
5
的等腰三角形,过棱PD的中点E作截面EFGH,使截面EFGH∥平面PBC,且截面EFGH分别交四棱锥各棱F、G、H.
(Ⅰ)证明:EF∥平面ABCD;
(Ⅱ)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=
9
2
,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,比为q,且S2+b3=21,S2-b3=q
(Ⅰ)求通项公式an与bn
(Ⅱ)设数列{cn}满足cn•Sn=1,求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:an+2an-an+1=tn(t-1),a1=1,a2=t(t>1,t为常数)
(1)求a3
(2)求证:an+1>an≥1;
(3)求证:{an}满足an+2-2tan+1+tan=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
4
+
y2
3
=1,直线l的方程为x=4,过右焦点F的直线l′与椭圆交于异于左顶点A的P,Q两点,直线AP,AQ交直线l分别于点M,N.
(Ⅰ)当
AP
AQ
=
9
2
时,求此时直线l′的方程;
(Ⅱ)试问M,N两点的纵坐标之积是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案