B
分析:先求出函数y=

(x
2-3x+2)的定义域,再由抛物线t=x
2-3x+2开口向上,对称轴方程为x=

,由复合函数的单调性的性质求函数y=

(x
2-3x+2)的单调递减区间.
解答:∵函数y=

(x
2-3x+2),
∴x
2-3x+2>0,
解得x<1,或x>2.
∵抛物线t=x
2-3x+2开口向上,对称轴方程为x=

,
∴由复合函数的单调性的性质,知:
函数y=

(x
2-3x+2)的单调递减区间是(2,+∞).
故选B.
点评:本题考查复合函数的单调减区间,是基础题.解题时要认真审题,注意对数函数性质的灵活运用.