精英家教网 > 高中数学 > 题目详情
已知方程ex-2x=-a有实数解,则实数a的取值范围是
 
考点:利用导数研究函数的极值,根的存在性及根的个数判断,利用导数研究函数的单调性
专题:函数的性质及应用,导数的综合应用
分析:先讨论函数的单调性,得出函数的最值,由函数的最大值大于或等于零(或函数的最小值小于或等于零)得出a的取值范围.
解答: 解:令f(x)=ex-2x+a,
则f′(x)=ex-2,可得f′(x)=0的根为x0=ln2,
当x<ln2时,f′(x)<0,可得函数在区间(-∞,ln2)上为减函数;
当x>ln2时,f′(x)>0,可得函数在区间(ln2,+∞)上为增函数,
∴函数y=f(x)在x=ln2处取得极小值f(ln2)=2-2ln2+a,
并且这个极小值也是函数的最小值,
由题设知函数y=f(x)的最小值要小于或等于零,即2-2ln2+a≤0,可得a≤2ln2-2,
故答案为:(-∞,2ln2-2].
点评:利用导数工具讨论函数的单调性,是求函数的值域和最值的常用方法,本题可以根据单调性,结合函数的图象与x轴交点,来帮助对题意的理解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算定积分
1
-1
1-x2
+x)dx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3sin(
1
2
x-
π
4
),x∈R

(1)列表并画出函数f(x)在长度为一个周期的闭区间上的简图;
(2)将函数y=sinx的图象作怎样的变换可得到f(x)的图象?

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则此几何体的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-ax-3(a∈R).
(1)当a=1时,求函数f(x)的单调区间;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t∈[1,2],函数g(x)=x3+x2[
m
2
+f′(x)]在区间(t,3)上总存在极值?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x<1或x>5},B={x|a≤x≤b},A∩B={x|5<x≤6},若A∪B=R,则2a-b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为一个算法的程序框图,则其输出结果是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标平面内,由直线x=1,x=2,y=0和曲线y=
1
x
所围成的平面区域的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<
π
2
)的图象如图所示,为了得到y=cos2x的图象,则只要将f(x)的图象(  )
A、向左平移
π
6
个单位长度
B、向右平移
π
6
个单位长度
C、向左平移
π
12
个单位长度
D、向右平移
π
12
个单位长度

查看答案和解析>>

同步练习册答案