·ÖÎö £¨1£©Áз½³Ì×é½â³öa£¬b£»
£¨2£©ÉèPQ·½³ÌΪy=kx£¬ÔòOM·½³ÌΪy=-$\frac{1}{k}$x£¬ÁªÁ¢·½³Ì×é½â³öP£¬Q£¬MµÄ×ø±ê£¬¸ù¾ÝµÈ±ßÈý½ÇÐεÄÐÔÖÊÁз½³Ì×éÇó³ök¼´¿ÉµÃ³öMµÄ×ø±ê£®
½â´ð ½â£º£¨1£©¡ßÍÖÔ²¹ýµã£¨1£¬$\frac{\sqrt{3}}{2}$£©£¬ÇÒe=$\frac{\sqrt{3}}{2}$£¬
¡à$\left\{\begin{array}{l}{\frac{1}{{a}^{2}}+\frac{3}{4{b}^{2}}=1}\\{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{{a}^{2}-{b}^{2}={c}^{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=2}\\{b=1}\end{array}\right.$£®
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£®
£¨2£©¼ÙÉèÍÖÔ²ÉÏÊÇ·ñ´æÔÚµãM£¨µãMÔÚµÚÒ»ÏóÏÞ£©£¬Ê¹µÃ¡÷PQMΪµÈ±ßÈý½ÇÐΣ¬
ÉèÖ±ÏßPQµÄ·½³ÌΪy=kx£¬ÔòÖ±ÏßOMµÄ·½³ÌΪy=-$\frac{1}{k}$x£®
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=kx}\end{array}\right.$µÃP£¨$\frac{2}{\sqrt{1+4{k}^{2}}}$£¬$\frac{2k}{\sqrt{1+4{k}^{2}}}$£©£¬Q£¨-$\frac{2}{\sqrt{1+4{k}^{2}}}$£¬-$\frac{2k}{\sqrt{1+4{k}^{2}}}$£©£¬
ͬÀí¿ÉµÃM£¨$\frac{2|k|}{\sqrt{4+{k}^{2}}}$£¬$\frac{2}{\sqrt{4+{k}^{2}}}$£©£®
¡à|OP|=$\sqrt{\frac{4+4{k}^{2}}{1+4{k}^{2}}}$£¬|OM|=$\sqrt{\frac{4{k}^{2}+4}{4+{k}^{2}}}$£®
¡ß¡÷PQMΪµÈ±ßÈý½ÇÐΣ¬¡à|OM|=$\sqrt{3}$|OP|£¬
¡à$\frac{4{k}^{2}+4}{4+{k}^{2}}$=$\frac{12+12{k}^{2}}{1+{4k}^{2}}$£¬½âµÃk=$¡À\sqrt{11}$£®
M£¨$\frac{2\sqrt{11}}{\sqrt{15}}$£¬$\frac{2}{\sqrt{15}}$£©£¬¼´M£¨$\frac{2\sqrt{165}}{15}$£¬$\frac{2\sqrt{15}}{15}$£©£®
µãÆÀ ±¾Ì⿼ÁËÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÏòÁ¿ÖªÊ¶µÄÔËÓ㬿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | A=B | B£® | B¡ÊA | C£® | A?B | D£® | B?A |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨1£©£¨3£© | B£® | £¨1£©£¨2£©£¨4£© | C£® | £¨2£©£¨3£©£¨4£© | D£® | £¨1£©£¨2£©£¨3£©£¨4£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | pΪ¼Ù | B£® | ©VqÎªÕæ | C£® | p¡ÅqÎªÕæ | D£® | p¡ÄqΪ¼Ù |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $-\frac{3}{2}$»ò$-\frac{1}{2}$ | B£® | $-\frac{3}{2}$»ò$\frac{1}{2}$ | C£® | $-\frac{3}{2}$ | D£® | $-\frac{1}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com