12£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¹ýµã£¨1£¬$\frac{\sqrt{3}}{2}$£©£¬ÇÒÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÈôµãPÓëµãQ¾ùÔÚÍÖÔ²CÉÏ£¬ÇÒP£¬Q¹ØÓÚÔ­µã¶Ô³Æ£¬ÎÊ£ºÍÖÔ²ÉÏÊÇ·ñ´æÔÚµãM£¨µãMÔÚµÚÒ»ÏóÏÞ£©£¬Ê¹µÃ¡÷PQMΪµÈ±ßÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öµãMµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Áз½³Ì×é½â³öa£¬b£»
£¨2£©ÉèPQ·½³ÌΪy=kx£¬ÔòOM·½³ÌΪy=-$\frac{1}{k}$x£¬ÁªÁ¢·½³Ì×é½â³öP£¬Q£¬MµÄ×ø±ê£¬¸ù¾ÝµÈ±ßÈý½ÇÐεÄÐÔÖÊÁз½³Ì×éÇó³ök¼´¿ÉµÃ³öMµÄ×ø±ê£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²¹ýµã£¨1£¬$\frac{\sqrt{3}}{2}$£©£¬ÇÒe=$\frac{\sqrt{3}}{2}$£¬
¡à$\left\{\begin{array}{l}{\frac{1}{{a}^{2}}+\frac{3}{4{b}^{2}}=1}\\{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{{a}^{2}-{b}^{2}={c}^{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=2}\\{b=1}\end{array}\right.$£®
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£®
£¨2£©¼ÙÉèÍÖÔ²ÉÏÊÇ·ñ´æÔÚµãM£¨µãMÔÚµÚÒ»ÏóÏÞ£©£¬Ê¹µÃ¡÷PQMΪµÈ±ßÈý½ÇÐΣ¬
ÉèÖ±ÏßPQµÄ·½³ÌΪy=kx£¬ÔòÖ±ÏßOMµÄ·½³ÌΪy=-$\frac{1}{k}$x£®
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=kx}\end{array}\right.$µÃP£¨$\frac{2}{\sqrt{1+4{k}^{2}}}$£¬$\frac{2k}{\sqrt{1+4{k}^{2}}}$£©£¬Q£¨-$\frac{2}{\sqrt{1+4{k}^{2}}}$£¬-$\frac{2k}{\sqrt{1+4{k}^{2}}}$£©£¬
ͬÀí¿ÉµÃM£¨$\frac{2|k|}{\sqrt{4+{k}^{2}}}$£¬$\frac{2}{\sqrt{4+{k}^{2}}}$£©£®
¡à|OP|=$\sqrt{\frac{4+4{k}^{2}}{1+4{k}^{2}}}$£¬|OM|=$\sqrt{\frac{4{k}^{2}+4}{4+{k}^{2}}}$£®
¡ß¡÷PQMΪµÈ±ßÈý½ÇÐΣ¬¡à|OM|=$\sqrt{3}$|OP|£¬
¡à$\frac{4{k}^{2}+4}{4+{k}^{2}}$=$\frac{12+12{k}^{2}}{1+{4k}^{2}}$£¬½âµÃk=$¡À\sqrt{11}$£®
M£¨$\frac{2\sqrt{11}}{\sqrt{15}}$£¬$\frac{2}{\sqrt{15}}$£©£¬¼´M£¨$\frac{2\sqrt{165}}{15}$£¬$\frac{2\sqrt{15}}{15}$£©£®

µãÆÀ ±¾Ì⿼ÁËÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÏòÁ¿ÖªÊ¶µÄÔËÓ㬿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÔÚÖ±½Ç×ø±êxOyÖУ¬${C_1}£º\left\{{\begin{array}{l}{x=t}\\{y=t+5}\end{array}}\right.£¨t$Ϊ²ÎÊý£©£¬ÔÚÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏß${C_2}£º{¦Ñ^2}+2{¦Ñ^2}{sin^2}¦È-3=0$£®
£¨1£©ÇóC1µÄÆÕͨ·½³ÌÓëC2µÄ²ÎÊý·½³Ì£»
£¨2£©¸ù¾Ý£¨1£©ÖÐÄãµÃµ½µÄ·½³Ì£¬ÇóÇúÏßC2ÉÏÈÎÒâÒ»µãPµ½C1µÄ×î¶Ì¾àÀ룬²¢È·¶¨È¡µÃ×î¶Ì¾àÀëʱPµãµÄÖ±½Ç×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖª¼¯ºÏA={1£¬2£¬3}£¬B={2£¬3}£¬Ôò£¨¡¡¡¡£©
A£®A=BB£®B¡ÊAC£®A?BD£®B?A

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èô3f£¨x-1£©+2f£¨1-x£©=2x£¬Çóf£¨x£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®º¯Êýf£¨x£©=$\frac{x}{{{x^2}+a}}$µÄͼÏó¿ÉÄÜÊÇ£¨¡¡¡¡£©
A£®£¨1£©£¨3£©B£®£¨1£©£¨2£©£¨4£©C£®£¨2£©£¨3£©£¨4£©D£®£¨1£©£¨2£©£¨3£©£¨4£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÏòÁ¿$\overrightarrow{m}$=£¨$\sqrt{3}$sin$\frac{x}{4}$£¬1£©£¬$\overrightarrow{n}$=£¨cos$\frac{x}{4}$£¬cos2$\frac{x}{4}$£©£¬Èô$\overrightarrow{m}$•$\overrightarrow{n}$=1£¬Çócos£¨x+$\frac{¦Ð}{3}$£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÉèÃüÌâp£ºº¯Êýy=sin£¨2x+$\frac{¦Ð}{3}$£©µÄͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»³¤¶ÈµÃµ½µÄÇúÏß¹ØÓÚyÖá¶Ô³Æ£»ÃüÌâq£ºº¯Êýy=|2x-1|ÔÚ[-1£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£®ÔòÏÂÁÐÅжϴíÎóµÄÊÇ£¨¡¡¡¡£©
A£®pΪ¼ÙB£®©VqÎªÕæC£®p¡ÅqÎªÕæD£®p¡ÄqΪ¼Ù

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èôf£¨x£©=x3+ax2+bx-a2-7aÔÚx=1´¦È¡µÃ¼«´óÖµ10£¬Ôò$\frac{b}{a}$µÄֵΪ£¨¡¡¡¡£©
A£®$-\frac{3}{2}$»ò$-\frac{1}{2}$B£®$-\frac{3}{2}$»ò$\frac{1}{2}$C£®$-\frac{3}{2}$D£®$-\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª¼¯ºÏA={x¡ÊR|ax2+2x+1=0}£¬ÆäÖÐa¡ÊR£®
£¨1£©1ÊÇAÖеÄÒ»¸öÔªËØ£¬ÓÃÁоٷ¨±íʾA£»
£¨2£©ÈôAÖÐÓÐÇÒ½öÓÐÒ»¸öÔªËØ£¬ÇóʵÊýaµÄ×é³ÉµÄ¼¯ºÏB£»
£¨3£©ÈôAÖÐÖÁ¶àÓÐÒ»¸öÔªËØ£¬ÊÔÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸