4£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=-3+t}\\{y=1-t}\end{array}}\right.$£¨tΪ²ÎÊý£©£¬ÒÔOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬²¢ÔÚÁ½ÖÖ×ø±êϵÖÐÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ+2cos¦È=0£®
£¨1£©°ÑÇúÏßCµÄ¼«×ø±ê·½³Ì»¯ÎªÆÕͨ·½³Ì£»
£¨2£©ÇóÖ±ÏßlÓëÇúÏßCµÄ½»µãµÄ¼«×ø±ê£¨¦Ñ¡Ý0£¬0¡Ü¦È£¼2¦Ð£©£®

·ÖÎö £¨1£©ÀûÓü«×ø±êÓëÖ±½Ç×ø±êµÄ»¥»¯£¬¼´¿É°ÑÇúÏßCµÄ¼«×ø±ê·½³Ì»¯ÎªÆÕͨ·½³Ì£»
£¨2£©Çó³öÖ±ÏßlÓëÇúÏßCµÄ½»µãµÄÖ±½Ç×ø±ê£¬È»ºó»¯Îª¼«×ø±ê¼´¿É£®

½â´ð ½â£º£¨¢ñ£© ÓÉÇúÏßCµÄ¼«×ø±ê·½³Ì¦Ñ+2cos¦È=0µÃ¦Ñ2+2¦Ñcos¦È=0£¬¼´x2+y2+2x=0£¬
ËùÒÔÇúÏßCµÄÆÕͨ·½³ÌΪx2+y2+2x=0¡­£¨4·Ö£©
£¨¢ò£©ÓÉÖ±Ïßl²ÎÊý·½³Ì$\left\{\begin{array}{l}x=-3+t\\ y=1-t\end{array}\right.$£¨tΪ²ÎÊý£©£¬µÃÖ±ÏßlµÄÆÕͨ·½³ÌΪx+y+2=0£¬¡­£¨6·Ö£©
ÓÉ$\left\{\begin{array}{l}x+y+2=0\\{x^2}+{y^2}+2x=0\end{array}\right.$£¬µÃ$\left\{\begin{array}{l}x=-1\\ y=-1\end{array}\right.$»ò$\left\{\begin{array}{l}x=-2\\ y=0\end{array}\right.$£¬¡­£¨8·Ö£©
ËùÒÔÖ±ÏßlÓëÇúÏßCµÄ½»µãµÄ¼«×ø±ê·Ö±ðΪ$£¨{\sqrt{2}£¬\frac{5¦Ð}{4}}£©$£¬£¨2£¬¦Ð£©£®¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²éÇúÏߵļ«×ø±ê·½³ÌÓëÆÕͨ·½³ÌµÄ»¥»¯£¬Ö±ÏߵIJÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄ»¥»¯£¬¿¼²é¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Ä³Í¶×ʹ«Ë¾¶ÔÒÔÏÂÁ½¸öÏîÄ¿½øÐÐǰÆÚÊг¡µ÷ÑУº
ÏîÄ¿A£ºÍ¨ÐÅÉ豸£¬¸ù¾Ýµ÷ÑУ¬Í¶×ʵ½¸ÃÏîÄ¿ÉÏ£¬ËùÓпÉÄܽá¹ûΪ£º»ñÀû40%¡¢Ëðʧ20%¡¢²»Åⲻ׬£¬ÇÒÕâÈýÖÖÇé¿ö·¢ÉúµÄ¸ÅÂÊ·Ö±ðΪ$\frac{7}{12}$¡¢$\frac{1}{6}$¡¢a£®
ÏîÄ¿B£ºÐÂÄÜÔ´Æû³µ£¬¸ù¾Ýµ÷ÑУ¬Í¶×ʵ½¸ÃÏîÄ¿ÉÏ£¬ËùÓпÉÄܽá¹ûΪ£º»ñÀû30%¡¢¿÷Ëð10%£¬ÇÒÕâÁ½ÖÖÇé¿ö·¢ÉúµÄ¸ÅÂÊ·Ö±ðΪb¡¢c£®
¾­²âË㣬µ±Í¶ÈëA¡¢BÁ½¸öÏîÄ¿µÄ×ʽðÏàµÈʱ£¬ËüÃÇËù»ñµÃµÄƽ¾ùÊÕÒæ£¨¼´ÊýѧÆÚÍû£©Ò²ÏàµÈ£®
£¨1£©Çóa£¬b£¬cµÄÖµ£»
£¨2£©Èô½«100ÍòԪȫ²¿Í¶µ½ÆäÖеÄÒ»¸öÏîÄ¿£¬ÇëÄã´Ó·çÏÕ¿ØÖƽǶÈΪͶ×ʹ«Ë¾Ñ¡ÔñÒ»¸öºÏÀíµÄÏîÄ¿£¬ËµÃ÷ÀíÓÉ£»
£¨3£©Èô¶ÔÏîÄ¿AͶ×Êx£¨0¡Üx¡Ü100£©ÍòÔª£¬Ëù»ñµÃÀûÈóÎªËæ»ú±äÁ¿Y1£¬£»ÏîÄ¿BͶ×Ê£¨100-x£©ÍòÔª£¬Ëù»ñµÃÀûÈóÎªËæ»ú±äÁ¿Y2£¬¼Çf£¨x£©=D£¨Y1£©+D£¨Y2£©£¬µ±xΪºÎֵʱ£¬f£¨x£©È¡µ½×îСֵ£¿×îСֵΪ¶àÉÙ£¿
£¨²Î¿¼¹«Ê½£ºËæ»ú±äÁ¿XµÄ·½²î£ºD£¨X£©=$\sum_{i=1}^{n}$£¨x${\;}_{i}-E£¨X£©£©^{2}$2pi£¬D£¨aX+b£©=a2D£¨x£©£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¹ýµã£¨$\sqrt{3}$£¬$\frac{1}{2}$£©£¬ÇÒÍÖÔ²EµÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÊÇ·ñ´æÔÚÒÔA£¨0£¬b£©ÎªÖ±½Ç¶¥µãÇÒÄÚ½ÓÓÚÍÖÔ²EµÄµÈÑüÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³ö¹²Óм¸¸ö£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®º¯Êýy=lg£¨tanx-$\sqrt{3}$£©µÄ¶¨ÒåÓòÊÇ$\left\{{x|k¦Ð+\frac{¦Ð}{3}£¼x£¼k¦Ð+\frac{¦Ð}{2}£¬k¡ÊZ}\right\}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èôº¯Êýy=f£¨x£©¶ÔÈÎÒâx1£¬x2¡Ê£¨0£¬1]£¬¶¼ÓÐ$|f£¨{x_1}£©-f£¨{x_2}£©|¡Ü¦Ð|\frac{1}{x_1}-\frac{1}{x_2}|$£¬Ôò³Æº¯Êýy=f£¨x£©ÊÇ¡°ÒÔ¦ÐΪ½çµÄÀàбÂʺ¯Êý¡±£®
£¨I£©ÊÔÅжϺ¯Êýy=$\frac{¦Ð}{x}$ÊÇ·ñΪ¡°ÒÔ¦ÐΪ½çµÄÀàбÂʺ¯Êý¡±£»
£¨¢ò£©ÈôʵÊýa£¾0£¬ÇÒº¯Êýf£¨x£©=$\frac{1}{2}$x2+x+alnxÊÇ¡°ÒÔ¦ÐΪ½çµÄÀàбÂʺ¯Êý¡±£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÔ²CµÄÔ²ÐÄÔÚ×ø±êÔ­µãO£¬ÇÒÓëÖ±Ïß${l_1}£ºx-y-2\sqrt{2}=0$ÏàÇУ®
£¨1£©ÈôÓëÖ±Ïßl1´¹Ö±µÄÖ±ÏßÓëÔ²C½»ÓÚ²»Í¬µÄÁ½µãP£¬Q£¬ÇÒÒÔPQΪֱ¾¶µÄÔ²¹ýÔ­µã£¬ÇóÖ±ÏßµÄ×ݽؾࣻ
£¨2£©¹ýµãG£¨1£¬3£©×÷Ô²CµÄÇÐÏߣ¬ÇóÇÐÏߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªcos£¨¦Ð+¦Á£©=$\frac{1}{3}$£¬¦Ð£¼¦Á£¼2¦Ð£¬Ôòsin¦ÁµÄÖµÊÇ£¨¡¡¡¡£©
A£®-$\frac{2\sqrt{2}}{3}$B£®$\frac{2\sqrt{2}}{3}$C£®-$\frac{2}{3}$D£®$\frac{2}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬SnΪÆäǰnÏîºÍ£¬¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬Âú×ã¹ØÏµÊ½$2{S_n}=\frac{9}{4}{a_n}-\frac{9}{4}$£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÉèÊýÁÐ{bn}µÄͨÏʽÊÇ${b_n}=\frac{1}{{£¨{{log}_3}{a_n}-1£©£¨{{log}_3}{a_n}+1£©}}$£¬Ç°nÏîºÍΪTn£¬ÇóÖ¤£º¶ÔÓÚÈÎÒâµÄÕýÕûÊýn£¬×ÜÓÐ${T_n}£¼\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªx£¬y£¬z¶¼ÊÇÕýÕûÊý£¬ÇÒx2+y2=z2£»
£¨1£©ÇóÖ¤£ºx£¬y£¬z²»¿ÉÄܶ¼ÊÇÆæÊý£»
£¨2£©ÇóÖ¤£ºµ±n¡ÊN£¬n£¾2ʱ£¬xn+yn£¼zn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸